

SwissCube Project Phase C Critical Design Review, April 21-25, 2008

Garikoitz Madinabeitia

Antenna Deployment System (ADS)

Driving Requirements

FUNCTIONNAL REQUIREMENTS

Antenna Position

 The ADS shall maintain the antennas in a stowed position until it receives the command to deploy the antennas.

Deployment

ADS shall deploy the two antennas.

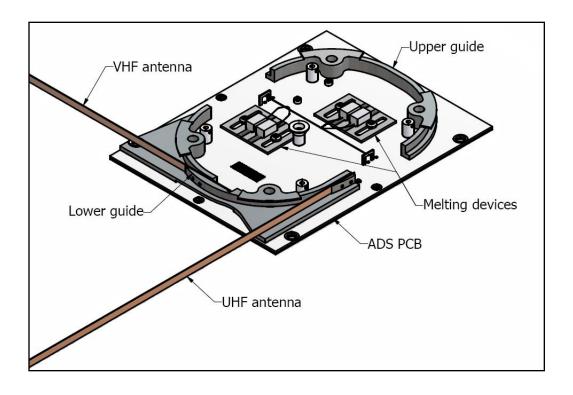
MISSION & PERFORMANCE REQUIREMENTS

Fixed Position

 After deployment, the antennas shall be locked in a fixed position, with a precision of less than [20] deg. compared to their designed position.

System Power

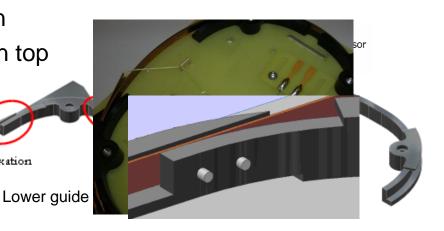
 The deployment of the antennas shall take less than [40] sec (20sec for each wire) after reception of the deployment command or signal.


Interface Requirements

Mechanical requirements:

- 1. Max. Weight = 25 gr.
- 2. Max. Interior volume = $0.082 \times 0.106 \times 0.009 \text{ m}^3$
- Max. Height going out of the rails = 6.5 mm
- Electrical requirements:
- 1. Voltage = $2 \times 3.3 \text{ V}$
- 2. Current = 2 x 4 Watts
- Boundary requirements:
- 1. Temperature range = -50°C / +70°C
- Pressure = Vacuum conditions

Design Description



Design Description

- PCB plate
- 2 flat cupper-beryllium antennas orthogonal to each other
- 2 POM guides
- Antennas glued and locked to the guides and connected to the PCB

UHF fixation

- Dyneema fiber holding the antennas
- 2 nichrome wires to melt the fiber (redundancy)
- Moving melting devices to ensure contact between nichrome and dyneema
- Electrical connections directly on the plate
- Electrically isolated antennas by Kapton
- Enough space to add solar cell panel on top

Operational scenario

- Kill-switch activated when expelled from P-POD
- 2. Current passes through 1st wire
- 3. Wire heats up and melt fibre
- 4. Current passes through 2nd wire
- 5. Wire heats up and melt fibre (if 1st one didn't work, REDUNDANCY)
- 6. Once antennas free, they deploy (own spring force)

Fabrication of Qualification and Flight Models

- PCB: fabricated by MicroPCB, already 1 in house, waiting for the second
- Guides: fabricated by Dynatec, already 5 pairs in house
- Melting devices: fabricated by Atelier Circuit Inprimés (ACI) at EPFL
- Antennas: 0.037m wide and 2.8m long copper-beryllium sheet from "NGK Berylco" (France) in house
- Resistances: bought at Distrelec

Tests Description and Results

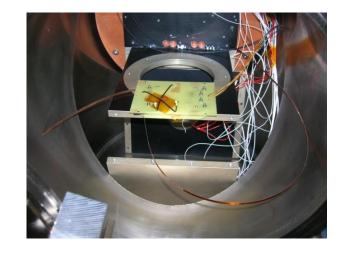
- ADS HEATING TEST (January-February 2008, RUAG Nyon)
 - Verify that nichrome wires melt the dyneema and the antennas deploy
 - Vacuum / -50°C and ambient temp.

- Heat 6 nichrome wires increasing the current.
- Observe the colour of the wire and the time needed to reach the colour
- Temperature of the wire must be at about 300°C to guaranty a melting of the dyneema
- Choose best adapted current
- Nichrome wire doesn't melt while heated during 30 sec.
- Same behaviour at different temperatures (-50°C / +70°C)

Best option = 180 mA current (Light orange). Wire at 600 - 800°C

Tests Description and Results

- ADS HEATING TEST (January-February 2008, RUAG Nyon)
 - Verify that nichrome wires melt the dyneema and the antennas deploy
 - Vacuum / -50°C and ambient temp.


Deployment test

-50[°C]

Uapplied [V]	I _{measured} [mA]	$R_{tot} \left[\Omega\right]$	Deploying time [sec]	Total powered time [sec]
3.26	183	17.8	4	10

U _{applied} [V]	I _{measured} [mA]	$R_{tot} [\Omega]$	Deploying time [sec]	Total powered time [sec]
3.28	170	18.3	5	8

The new melting system design of the ADS has been validated.

The current must be set at 180±20[mA].

The melting time must be set at 16 seconds.

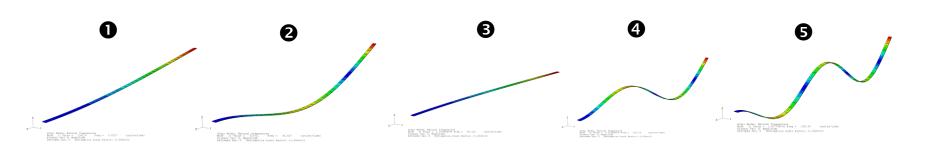
Test/Analysis Description and Results

- VIBRATION TEST (30-31 January 2008, EPFL-LMAF lab.)
 - Demonstrate the ability of the solar cells and ADS to withstand random excitations of the launcher increased by a qualification factor
 - Ambient pressure / 23°C / <60% humidity / 2 minutes for each axis

Table 1 Level of the random vibration test.

Frequency [Hz]	20	35	50	800	1500	2000	G_{rms}
PSD [10 ⁻³ g ² /Hz]	100	100	200	200	100	100	17.4

The nichrome and dyneema wires withstand the random vibration



Analysis Description and Results

ANTENNA'S EIGEN FREQUENCIES ANALYSIS (ANALITICALLY & EFM)

EIGEN FREQUENCY (HZ)	SHORT ANTENNA	LONG ANTENNA		
1	5.8	0.5		
2	36.5	3.1		
3	58.1 (lateral mode)	5.1 (lateral mode)		
4	102.3	8.9		
5	200.5	17.4		

The frequencies at which the antennas could disturb the attitude control of the satellite are characterized

Conclusions and Future Work

- Design requirements are fulfilled with a 20.8 gr weight
- Done tests show that the Antenna Deployment System works
- Ready for qualification