

 Date : 23/06/2007
Issue : 1 Rev : 3
Page : 1 of 101

Semester Project, Summer 2007

 Phase B/C

ADCS System
Engineer

ADCS System and
Hardware

Prepared by:

Hervé Péter-Contesse

Professor:

Maurice Borgeaud

Advisor:

Muriel Noca

EPFL

Lausanne
Switzerland

23/06/2007

http://space.epfl.ch/

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 2 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

RECORD OF REVISIONS

ISS/REV Date Modifications Created/modified by

1/0 3/06/2007 First release / Draft Hervé Péter-Contesse

1/1 10/06/2007 Completion Hervé Péter-Contesse

1/2 18/06/2007 Grammar correction and
completion. Requirements
added

Hervé Péter-Contesse

1/3 23/06/2007 Grammar correction and
completion. Final version

Hervé Péter-Contesse

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 3 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

RECORD OF REVISIONS ... 2

1 INTRODUCTION .. 8

2 DESIGN REQUIREMENTS ... 10

3 DESIGN ASSUMPTIONS AND APPROACH .. 34

3.1 APPROACH 34
3.2 DISTURBANCES 34
3.3 HARDWARE ASSUMPTIONS 35

4 TECHNICAL DESCRIPTION ... 38

4.1 ADCS MAIN BOARD 38
4.1.1 Board design 38
4.1.2 MSP430F16x microcontrollers properties 39
4.1.3 Software 40
4.1.4 Second ADCS board revision 43

4.2 SENSORS 43
4.2.1 Magnetometer 43
4.2.2 Gyroscopes 45
4.2.3 Sun Sensors 46

4.3 ACTUATORS 47
4.3.1 Magnetotorquers 47
4.3.2 Magnets 53

4.4 POWER BUDGET 55

5 TESTS.. 57

5.1 ADCS MAIN BOARD 57
5.1.1 DCO frequency 57

5.2 MAGNETOMETER 58
5.2.1 Measurement time 58
5.2.2 Offset configuration 58
5.2.3 Sensitivity and gain 60
5.2.4 Vacuum 60
5.2.5 Integration test with EPS 61

5.3 SUN SENSORS 62
5.4 MAGNETOTORQUERS 62

5.4.1 Impedance measurement 62
5.4.2 PWM rates and filters 63
5.4.3 Outgassing 65

6 RECOMMENDATIONS ... 66

7 CONCLUSION ... 67

8 ACKNOWLEDGMENTS .. 68

9 CONTACTS .. 68

10 REFERENCES ... 69

11 ABBREVIATED TERMS .. 70

APPENDIX A ADCS BOARD ELECTRICAL SCHEMATIC AND PCB ... 70

A.1 AHW1_4 70
A.1.1 Electrical schematic 70
A.1.2 PCB 72

A.2 SUN SENSORS ELECTRICAL SCHEMATIC 72
A.3 ADCS PCB USABLE AREA FOR THE NEXT BOARD 73

APPENDIX B MAGNETOTORQUERS DRAWINGS .. 74

B.1 OUTER DIMENSIONS 74
B.2 WINDING PARTS 74

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 4 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

B.3 MOULD PARTS 75
B.4 TRANSFER FUNCTION 76

APPENDIX C TEST PROCEDURES .. 76

C.1 MAGNETOMETER VACUUM TEST 76
C.1.1 Hardware 76
C.1.2 Procedure 76

C.2 MAGNETOTORQUER OUTGASSING 77

APPENDIX D INTERFACE CONTROL DOCUMENTS ... 78

D.1 ELECTRICAL 78
D.2 DATA 79

APPENDIX E SOFTWARE .. 79

E.1 PERTURBATION CALCULATION 79
E.2 MAGNETOTORQUER DESIGN 79
E.3 ADCS SW 79

E.3.1 Microcontroller programming in C recommendations 79
E.3.2 Main file and General parameters 80
E.3.3 Magnetometer 85
E.3.4 Magnetotorquers 88
E.3.5 Gyroscopes 91
E.3.6 Sun sensors 93
E.3.7 Temperature sensors 96

E.4 WRITE IN FLASH MEMORY 98
E.5 MAGNETOMETER AND MAGNETOTORQUERS MODEL 100

E.5.1 Matlab Magnetometer model 100
E.5.2 Matlab Magnetotorquer model 101

APPENDIX F OTHER .. 101

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 5 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

PROJECT: SwissCube Satellite PHASE: B/C

WP REF: 4600

WP Title: SwissCube ADCS system engineer

Responsible: Space Center

Collaborator/assistant: Muriel Noca

Student: Hervé Péter-Contesse

Start date: 12-03-07

End date: 30-06-07

WP Manager: M. Noca

Sheet 1 of 3

Issue Ref: 1

Issue Date:

09-03-07

Introduction

This Work Package summarizes the work expected from the student during phase B/C
(semester’s project) of the SwissCube Project. The expected duration of the work is as stated
above.

The objectives of this task will be four fold:

 Review the task description;

 Plan a schedule for your work, and review it with your project assistant;

 Perform the tasks and keep the project informed of the status;

 Provide the outputs and deliverables listed at the end of this document.

The student will report for all technical matters to the Lab assistant (when applicable) and
project system engineer (assistant) assigned at the beginning of the semester.

The student will have to participate in the design meetings related to his topic (mechanical,
electronics, data).

The times open for discussion with the project assistant are:

- Monday afternoons in ELD 014

- Friday afternoons in ELD 014.

Deadlines are summarized here:

- Kick-off meeting (mandatory): March 15, 17h00 in ELD 010

- Mid-term review: May 2, time TBD ELD 010

- Draft report due: June 3

- Final report due: June 17

- Presentation due: July 5

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 6 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Task Description:

During last semester project, the hardware (sensors, actuators and controller) for the
SwissCube attitude determination and control system (ADCS) has been selected, and
preliminary tests have been made. The goal of this project is to optimize the hardware
electronics PCB, program the micro-controller and test the board with all sensor and actuator
components. This project will also require the student to understand the control and
determination aspects of the ADCS, verifying the current specifications, providing technical
overview of the proposed sensor and actuator characterization tests. This project will be done
closely with the project on the determination algorithms.

This task includes :

 Review all documentation regarding the ADCS Hardware part of the ADCS
subsystem; Concentrate on the understanding of the perturbation calculations and
understanding of the science and project requirements and needs;

 Review current state of the hardware, PCB design and programmed functionalities;

 Program the ADCS micro-controller for each missing functionalities;

 Characterize operations of the magneto-torquers;

 Integrate magnetometers and characterize operations;

 Follow characterization tests of the gyroscopes and sun sensors;

 Provide recommendations for, or new design of, the ADCS HW board;

In support of and in coordination with the attitude determination algorithms, the student
shall:

 Identify the Earth magnetic model to use and provide, if necessary a simplification for
use in the determination algorithms;

 Provide a model of the sun-sensors, gyroscopes and magnetometers for inclusion into
the determination algorithms; (Interface Control Document)

 Provide a model of the magneto-torquers for inclusion into the control algorithms;
(Interface Control Document)

 Document all activities.

Inputs:

- “SwissCube Phase B Mission and System Overview” (S3-B-SET-1-2-
Mission_System_Overview.pdf);

- “SwissCube Project Specifications Document” (S3-B-SE-1-0-
Level_1and2_specifications.pdf);

- “SwissCube System Specifications Document” (S3-B-SE-1-0-Level_3_SSR.pdf);

- “SwissCube Your_Subsystem Specifications Document” (S3-B-SE-1-0-
Level_4_SUBSYSTEM_specifications.pdf);

- S3-B-ADCS-1-4-ADCS_HW.pdf;

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 7 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

- S3-B-ADCS-1-3-Magnetic_sensor.pdf;

- SwissCube document templates;

- Reference: "Space Mission Analysis and Design", Larson & Wertz

Outputs:

- Performance model of all sensors and actuators;

- Tests of the ADCS micro-controller functionalities;

- Test of the ADCS board with as many sensors and actuators as available;

- Updated design of ADCS-HW PCB;

- Interface control document for the ADCS-HW PCB;

All analyses should include documentation of the assumptions.

Deliverables:

- A final report including a short description of all outputs.

- A presentation at the Delta-PDR that will conclude Phase B.

- A disk containing all analysis and documentation files for records.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 8 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

1 INTRODUCTION

The main purpose of this report is to present the development, the design and test of the Attitude
Control and Determination System (ADCS) hardware of the SwissCube satellite. The main part of
this Semester Project was to continue two previous projects (phase B): the 1st has been done by
Bastien Despont on the whole ADCS system and hardware (see [R1]) and the 2nd by Vasco Vitanov
on the magnetometers (see [R2]). A second part was to develop an Earth’s Magnetic Field model,
sensors and actuators models in order to use them in the control and determination algorithms. The
part concerning the Earth’s magnetic field model is not presented in this report, but in [R3].

Based on the CubeSat program started by the Stanford University and the California Polytechnic
State University (CalPoly) the SwissCube is the first entirely Swiss picosatellite program. The primary
objective of developing this satellite is to provide a dynamic and realistic learning environment for
undergraduates, graduates and to improve the development of small satellite technologies. The
secondary objective is to house a science payload in order to take optical measurements and
characterize the Nightglow phenomenon (see Figure 1-1) over all latitudes and longitudes for at least
a period of 3 months, with extended science mission duration up to 1 year.

Figure 1-1 : Artist View of the SwissCube

The ADCS must determine the position, velocity and orientation and also control the satellite. The
determination is the most important point, because we must to know where the payload is pointing
to characterise the nightglow phenomenon. The major issue of the control is to reduce the spinning
rate of the satellite after the launch and, if it is technically possible, to orient the payload in a precise
direction in order to take photographs.

The ADCS algorithms run on the CDMS microcontroller (which is the main computer of the
SwissCube). The ADCS board itself is in charge of the sensor readings and actuators control.

Figure 1-2 shows the architecture of the ADCS.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 9 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Propagator
TLEs

Time

Clock

Position

Desired

State

Earth’s Magnetic

Field model

Control

algorithms

Actuators
Magnetotorquers

- M

T

Physical

System

Determination

algorithms

Sensors

Sun Sensors

Gyroscopes

Magnetometers

Estimated

State

Real State

Perturbations Torques

Noise

Figure 1-2 : ADCS functional diagram

The sensors used for the ADCS system are:

 A 3-axis magnetometer (MM) to measure the Earth’s magnetic field (EMF) intensity and
direction

 A 3-axis gyroscopes (GYR) to measure the spinning rate for each axis

 6 Sun sensors (SS) to find the direction of the sun

 Temperature sensors to compensate the temperature drift of the other sensors

The actuators are:

 3 (or 2) magnetotorquers (or coils; MT) to produce a torque thanks to their interaction with
the Earth’s magnetic field

 Passive actuators such as permanents magnets (not yet decided)

The algorithms can be separated in 4 main parts:

 The propagator which computes the position and the orbit of the satellite

 The Earth’s magnetic field model which compute the magnetic field intensity and direction

 The control algorithms

 The determinations algorithms to filter the sensors measurements (with an Extended
Kalman Filter) and then determine the satellite

This report will mainly present the design and test of the ADCS main board, magnetometer and
magnetotorquers. The design and test of the gyroscopes, sun sensors, propagator and determination
algorithms have been done by other students and are respectively presented in [R4], [R5], [R6] and
[R7].

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 10 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

2 DESIGN REQUIREMENTS

 ADCS requirements, level 4 and 5

 Level 4
 1. Functional
 1.0 General
 4_ADCS_10_01 Primary function
 The ADCS shall provide an interface with CDMS. This
 includes the following functions:
 Receive cmd from and send TM to CDMS
 Power and command actuators
 Power, command and receive TM, store and format data
 from sensors

 To fulfill mission objective 3

 3_SSR_10_02

 4_ADCS_10_02 Determination
 The ADCS subsystem shall provide determination of the
 attitude of the satellite.

 To fulfill science objective

 3_SSR_24_02

 4_ADCS_10_03 HK
 The ADCS shall provide HK to determine its health.

 To monitor health of the Space system

 3_SSR_10_06

 4_ADCS_10_04 Attitude control
 The ADCS shall provide a control for the attitude of the
 satellite

 Pointing stability

 3_SSR_24_04

 2. Mission and Performance
 2.1 Unit modes
 4_ADCS_21_01 Subsystem modes
 The ADCS system shall have the following modes:
 “NOMINAL”, “SENSOR”, “STAND-BY” and “OFF”
 modes.

 To fulfill its function

 4_ADCS_10_01

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 11 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4_ADCS_21_02 “OFF” mode
 In this mode the whole subsystem shall be turned off.

 OFF mode definition

 4_ADCS_21_01

 4_ADCS_21_03 “STAND-BY” mode
 In this mode only the microcontroller shall be on and waiting
 for a command.

 Stand-By mode definition

 4_ADCS_21_01

 4_ADCS_21_04 “SENSOR” mode
 In this mode only the microcontroller and all the sensors shall
 be turned on. Actuators shall be switched off.

 Attitude determination

 4_ADCS_10_02

 4_ADCS_21_05 “NOMINAL” mode
 In this mode the microcontroller, the sensors and the
 actuators shall be on.

 NOMINAL mode definition
 Attitude determination and control.

 4_ADCS_10_04

 2.3 Unit state H/W performance
 4_ADCS_23_01 Consumption in “OFF” mode
 The ADCS shall not consume any power in “OFF” mode.

 SSR power budget

 4_ADCS_21_02
 4_ADCS_23_02 Consumption in “STAND-BY” mode
 The ADCS shall consume less than [30] mW in “STAND-
 BY” mode.

 SSR power budget

 4_ADCS_21_03

 4_ADCS_23_03 Consumption in “SENSOR” mode
 The ADCS shall consume less than [90] mW in “SENSOR”
 mode.

 SSR power budget

 4_ADCS_21_04

 4_ADCS_23_04 Consumption in “NOMINAL” mode
 The ADCS shall consume less than [250] mW in
 “NOMINAL” mode.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 12 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 SSR power budget

 4_ADCS_21_05

 4_ADCS_23_06 Attitude determination
 The ADCS subsystem shall provide determination data of
 the attitude of the satellite with an accuracy of [10°] for each

 MSR

 3_SSR_24_02

 4_ADCS_23_07 Attitude control
 The ADCS subsystem shall provide a control for the attitude
 of the satellite with a stability [3°] deg/s in any direction.

 To ensure success of science mission (SwissCube MEMO, Pointing
 Accuracy and Stability Requirements by Daniel Hakansson)

 3_SSR_24_04

 2.4 Unit state S/W performance
 4_ADCS_24_01 Command data
 The ADCS shall accept the command signal for the actuators
 control electronics at least once every [10] seconds.

 Control algorithm

 4_ADCS_10_01
 4_ADCS_24_02 Data transmission
 The ADCS shall be able to send attitude and HK sensors
 data at specific requests from the CDMS.

 To fulfill its function

 4_ADCS_10_01

 2.5 Reliability and redundancy
 4_ADCS_25_02 Latch up protection
 The ADCS shall be designed with separate latch-up
 protection circuits.

 To mitigate SEL.

 3_SSR_25_03

 4_ADCS_25_03 SEU
 ADCS H/W and S/W design for critical functions shall
 mitigate possible SEUs.

 Protection

 3_SSR_25_01

 4_ADCS_25_04 Tests
 Reliability of the electrical systems shall be demonstrated by
 tests.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 13 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 Tests requirements

 3_SSR_25_02

 3. Design
 3.1 Constraints
 4_ADCS_31_01 Outgassing
 The ADCS materials shall have a Total Mass Loss (TML) ≤ 1
 % and a Collected Volatile Condensable Material (CVCM)
 ≤ 0.1 %.

 Arianespace user’s manual.

 3_SSR_31_15
 4_ADCS_31_02 Launch date
 The ADCS shall be ready for integration in the Engineering
 Qualification Model by Decembre 2007.

 Launch date deadline

 3_SSR_31_09

 4_ADCS_31_03 Contamination
 Nasa approved materials shall be used whenever possible to
 prevent contamination of other spacecraft during integration,
 testing and lauch.

 CalPoly spec.

 3_SSR_31_13

 3.2 Thermal
 4_ADCS_32 _01 Temperature
 The ADCS shall be capable of measuring its temperature.

 Thermal analysis.

 3_SSR_32_03

 4_ADCS_32 _02 Temperature control
 The ADCS shall have a passive temperature control.

 Thermal analysis.

 3_SSR_32_03

 4_ADCS_32_03 Thermal design
 The thermal design of the ADCS board shall ensure that all
 components are maintained within their qualification
 temperature range throughout the lifetime of the subsystem.

 Thermal Analysis

 3_SSR_32_02

 3.3 Maintainability

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 14 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4_ADCS_33 _01 Electrostatic sensibility
 The ADCS shall be handled with precaution against
 electrostatic discharges.

 Manufacturer recommendation

 3_SSR_33_01
 4_ADCS_33_02 Maintenance during storage and ground life
 The ADCS shall be designed to require no maintenance
 during storage and ground life. If ground maintenance during
 storage or ground operation cannot be avoided, the
 maintenance requirements shall be documented.

 To survive storage and ground life

 3_SSR_33_01

 4. Interfaces
 4.1 Structural
 4_ADCS_41_01 Attachment
 The ADCS shall be attached on the frame.

 S&C

 4_SC_10_02

 4.2 Thermal
 4_ADCS_42_01 Thermal interfaces
 Thermal interfaces shall be optimized considering the whole
 satellite thermal design.

 Thermal analysis

 3_SSR_32_02

 4.3 Electrical
 4_ADCS_43_01 Supply voltage
 The ADCS shall use [3.3V] +/- [7%].

 EPS.

 3_SSR_31_16

 4_ADCS_43_02 Current
 The ADCS shall use less than [150] mA.

 EPS.

 3_SSR_31_17
 4_ADCS_43_03 Connectors
 The ADCS shall use connectors compatible with the main
 data bus and the power bus.

 SSR.

 4_ADCS_10_01

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 15 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4.4 Data interfaces
 4_ADCS_44_01 Data bus compatibility
 The ADCS shall be capable of communicating with the main
 data bus.

 Same data bus for the whole satellite.

 4_ADCS_10_01

 4_ADCS_44_02 TM
 The ADCS generate TM with all the sensors.

 To provide housekeeping data

 4_ADCS_10_01

 4.5 Physical properties
 4_ADCS_45_01 Size
 The ADCS shall be adapted to the structure as shown on the
 picture below.

 S&C.
 Detail shall be discussed with mechanical engineer.

 4_SC_10_02

 4_ADCS_45_02 Mass
 The ADCS mass shall weight less than [120] grams.

 Mass budget.

 3_SSR_45_01

 5. Environmental
 5.0 General
 4_ADCS_50_01 Environment
 The ADCS operates under the environment constraints
 described in the SwissCube Environment Requirements
 document S3-B-STRU-1-3-Launch Environment.

 Launch environment document S3-B-STRU-1-3-Launch Environment
 G. Röthlisberger Space Environment at earth distances between [400
 and 1000 km]

 3_SSR_50_01

 5.1 Thermal
 4_ADCS_51_01 Qualification temperature range
 The ADCS subsystem shall survive in its qualification
 temperature range.

 Thermal analysis

 3_SSR_32_02

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 16 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5.2 Static and dynamic loads
 4_ADCS_52_01 Acceleration
 The ADCS shall withstand a maximal acceleration of [10,4] g
 including margins.

 Launch environment constraints

 3_SSR_52_02

 5.3 Vacuum
 4_ADCS_53_01 Vacuum
 The ADCS subsystem shall operate under vacuum conditions.

 Space Environement

 3_SSR_53_01

 5.4 Radiation
 4_ADCS_54_01 Total dose
 The ADCS shall support a TID of maximum [20]kRad.

 Analysis using ESA Spenvis Tool.
 This is the value for 1 year in orbit.

 3_SSR_54_02

 6. Operational
 6.1 Autonomy
 4_ADCS_61_01 Life time
 The ADCS shall be designed to operate during [4] months
 including commissioning and nominal activities. The lifetime
 can be extended to [1] year.

 Mission duration

 3_SSR_61_01

 6.2 Control
 4_ADCS_62_01 Cmd reception
 The ADCS shall be able to receive cmd from the CDMS at
 all times when not in the “OFF” mode. [TBC]

 To control the attitude of the space system

 4_ADCS_10_01

 6.3 Failure management
 4_ADCS_63_01 Failure propagation
 Failure of one part or element of the ADCS shall not result in
 consequential damage to the equipments or other satellite
 components

 To minimize failure propagation

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 17 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 3_SSR_63_01

 4_ADCS_63_02 Recovery plans
 For the nominal phase, possible failure scenarios and
 recovery plans shall be elaborated.

 To ensure mission duration objectives

 3_SSR_63_03

 Level 5
 1. Functional
 1.0 General
 5_ADCS/ACT_10_0 Actuators
 The actuators shall provide torque to control the attitude of
 the Space System.

 To perform attitude control.
 Actuators include: magnetotorquers.

 4_ADCS_10_04

 5_ADCS/ACT_10_0 Magnetotorquer axis control
 The magnetotorquers shall provide controllability on all 3 axis

 To provide attitude control

 4_ADCS_10_04

 5_ADCS/CTL_10_0 Controller signals
 The controller shall generate control signals of the actuators.

 Primary function

 4_ADCS_10_04

 5_ADCS/CTL_10_0 Detumbling
 The controller shall provide signals to detumble the satellite
 after leaving the P-POD or after any other event needing
 restabilisationfor far to the nominal attitude.

 Lowering rotational speed and angular error

 4_ADCS_10_04

 5_ADCS/CTL_10_0 Nominal Control
 The controller shall provide signals to keep the satellite near
 the origin (nominal attitude) when already there.

 Precision and perturbation rejection

 4_ADCS_10_04

 5_ADCS/DTS_10_0 Determination sensors
 The ADCS determination sensors shall provide data for
 determination of the attitude of the satellite.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 18 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 ADCS determination functions.
 These sensors includes : magnetometers, gyroscopes and sun sensors.

 4_ADCS_10_02
 5_ADCS/DTS_10_0 Sun Sensors axis measurement
 Sun sensors shall provide measurements on all 3 axis.

 To determine the attitude

 4_ADCS_10_02

 5_ADCS/DTS_10_0 Gyroscopes axis measurements
 Gyroscopes shall provide measurements on all 3 axis.

 To determine the attitude

 4_ADCS_10_02

 5_ADCS/DTS_10_0 Magnetometers axis measurements
 The magnetic sensors shall provide measurements on all 3
 axis.

 To provide attitude determination.

 4_ADCS_10_02

 5_ADCS/HKS_10_0 HK sensors
 The ADCS HK sensors shall provide data to determine the
 health of the ADCS subsystem.

 To fulfill ADCS function
 These sensors include Temperature sensors.

 4_ADCS_10_03

 5_ADCS/MCU_10_01 ADCS microncontroller function I
 The ADCS MCU shall receive commands from CDMS.

 Definition of ADCS function

 4_ADCS_10_01

 5_ADCS/MCU_10_02 ADCS Microcontroller function II
 The microcontroller shall turn off and on the sensors.

 ADCS determination function

 4_ADCS_10_02

 5_ADCS/MCU_10_03 ADCS microcontroller function III
 The microcontroller shall collect sensor data.

 ADCS function

 4_ADCS_10_02
 5_ADCS/MCU_10_04 ADCS microcontroller function IV
 The microcontroller shall format the data from sensor.

 ADCS function

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 19 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4_ADCS_10_02

 5_ADCS/MCU_10_05 ADCS microcontroller function V
 The microcontroller shall send TM to CDMS.

 ADCS function

 4_ADCS_10_01

 5_ADCS/MCU_10_06 ADCS microcontroller function VI
 The microcontroller shall command the actuators.

 ADCS attitude control function

 4_ADCS_10_04

 5_ADCS/PCB_10_0 PCB
 The ADCS PCB shall provide a mechanical and electrical
 support for all the electronics.

 To perform ADCS function

 4_ADCS_10_01

 2. Mission and Performance
 2.3 Unit state H/W performance
 5_ADCS/ACT_23_0 Magnetotorquers consumption in "NOMINAL" mode
 The mean magnetotorquer power consumption in
 “NOMINAL” mode shall be less than [50] mW per
 magnetotorquer.

 Power budget

 4_ADCS_23_04

 5_ADCS/ACT_23_0 Magnetotorquers consumption in "SENSOR" mode
 The magnetotorquers shall not consume any power in
 "SENSOR" mode.

 Power budget

 4_ADCS_23_03
 5_ADCS/ACT_23_0 Magnetotorquers consumption in "STAND-BY" mode
 The magnetotorquers shall not consume any power in
 "STAND-BY " mode.

 Power budget

 4_ADCS_23_02

 5_ADCS/ACT_23_0 Magnetotorquers consumption in "OFF" mode
 The magnetotorquers shall not consume any power in "OFF"
 mode.

 Power budget

 4_ADCS_23_01

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 20 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5_ADCS/ACT_23_0 Magnetotorquers magnetic moment
 The magnetotorquers shall generate a magnetic moment of at
 least [0.0285] Am2.

 AHW report phase B
 To control perturbations torques

 4_ADCS_10_04

 5_ADCS/DTS_23_0 Determination sensor power consumption in
 The mean sensors power consumption in “NOMINAL”
 mode shall be less than [60] mW.

 Power budget

 4_ADCS_23_04

 5_ADCS/DTS_23_0 Determination sensors consumption in "STAND-BY"
 The determination sensors shall not consume any power in
 "STAND-BY " mode.

 Power budget

 4_ADCS_23_02

 5_ADCS/DTS_23_0 Determination sensors consumption in "OFF" mode.
 The determination sensors shall not consume any power in
 "OFF" mode.

 Power budget

 4_ADCS_23_01
 5_ADCS/DTS_23_0 Magnetometers measurement range
 Magnetometers shall be capable of measuring magnetic fields
 in the range of [-60] μT and [60] μT with an accuracy
 of +/- [1]%.

 Sensor performances; maximal magnetic field over the poles according

 to “S3-C-ADCS-1-2-Earth's Magnetic Field Model” plus a margin of

 5μT.

 4_ADCS_10_02

 5_ADCS/DTS_23_0 Magnetometers measurement resolution
 The magnetic sensor shall have a minimum resolution of [1
 10-6]T.

 Sensor performances.

 4_ADCS_10_02

 5_ADCS/DTS_23_0 Sun sensors measurement range
 Sun sensors shall be capable of measuring the direction of the
 sun in the range of [0] deg and [60] deg with an accuracy of
 +/- [10]%.

 Sensor performances.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 21 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4_ADCS_10_02

 5_ADCS/DTS_23_0 Gyroscopes measurement range
 Gyroscopes shall be capable of measuring angular rate in the
 range of [0.01] deg/s and [180] deg/s with an accuracy of
 +/- [1]%.

 Sensor performances.

 4_ADCS_10_02

 5_ADCS/MCU_23_01 MCU consumption in "OFF" mode
 The microcontroller shall not consume any power in "OFF"
 mode.

 Power budget

 4_ADCS_23_01

 5_ADCS/MCU_23_02 MCU consumption in "STAND-BY" mode
 The mean microcontroller power consumption shall be less
 than [30] mW in "STAND-BY" mode.

 Power budget

 4_ADCS_23_02
 5_ADCS/MCU_23_03 MCU consumption in "SENSOR" mode
 The mean microcontroller power consumption shall be less
 than [30] mW in "SENSOR" mode.

 Power budget

 4_ADCS_23_03

 5_ADCS/MCU_23_04 MCU consumption in "NOMINAL" mode
 The mean microcontroller power consumption shall be less
 than [30] mW in "NOMINAL" mode.

 Power budget

 4_ADCS_23_04

 2.5 Reliability and redundancy
 5_ADCS/ACT_25_0 Actuators reliability and redundancy
 The actuators shall comply to 4_ADCS_25_02.

 To mitigate SEL.

 4_ADCS_25_02

 5_ADCS/ACT_25_0 Actuators reliability and redundancy
 The actuators shall comply to 4_ADCS_25_03.

 Level 4 ADCS requirements

 4_ADCS_25_03

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 22 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5_ADCS/ACT_25_0 Actuators reliability and redundancy
 The actuators shall comply to 4_ADCS_25_04.

 Level 4 ADCS requirements

 4_ADCS_25_04

 5_ADCS/DTS_25_0 Determination sensors reliability and redundancy
 The determination sensors shall comply to 4_ADCS_25_02.

 To mitigate SEL.

 4_ADCS_25_02

 5_ADCS/DTS_25_0 Determination sensors reliability and redundancy
 The determination sensors shall comply to 4_ADCS_25_03.

 Level 4 requirements

 4_ADCS_25_03

 5_ADCS/DTS_25_0 Determination sensors reliability and redundancy
 The determination sensors shall comply to 4_ADCS_25_04

 Level 4 requirements

 4_ADCS_25_04

 5_ADCS/MCU_25_01 MCU Reliability and redundancy
 The microcontroller shall comply to 4_ADCS_25_02.

 To mitigate SEL.

 4_ADCS_25_02

 5_ADCS/MCU_25_02 MCU Reliability and redundancy
 The microcontroller shall comply to 4_ADCS_25_03.

 Level 4 ADCS requirements

 4_ADCS_25_03

 5_ADCS/MCU_25_03 MCU Reliability and redundancy
 The microcontroller shall comply to 4_ADCS_25_04.

 Level 4 ADCS requirements

 4_ADCS_25_04
 5_ADCS/PCB_25_0 PCB reliability and redundancy
 The microcontroller shall comply to 4_ADCS_25_02.

 To mitigate SEL.

 4_ADCS_25_02

 5_ADCS/PCB_25_0 PCB reliability and redundancy
 The microcontroller shall comply to 4_ADCS_25_03.

 Level 4 ADCS requirements

 4_ADCS_25_03

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 23 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5_ADCS/PCB_25_0 PCB reliability and redundancy
 The microcontroller shall comply to 4_ADCS_25_04.

 Level 4 ADCS requirements

 4_ADCS_25_04

 3. Design
 3.1 Constraints
 5_ADCS/ACT_31_0 Magnetotorquers design constraints
 The magnetotorquers shall comply to 4_ADCS_31_01.

 Arina user's manual

 4_ADCS_31_01

 5_ADCS/ACT_31_0 Magnetotorquers design constraints
 The magnetotorquers shall comply to 4_ADCS_31_02.

 Launch date

 4_ADCS_31_02

 5_ADCS/ACT_31_0 Magnetotorquers design constraints
 The magnetotorquers shall comply to 4_ADCS_31_03.

 Level 4 ADCS requirements

 4_ADCS_31_03

 5_ADCS/DTS_31_0 Determination sensors design constraints
 The Determination sensors shall comply to 4_ADCS_31_01.

 Arina user's manual

 4_ADCS_31_01
 5_ADCS/DTS_31_0 Determination sensors design
 The Determination sensors shall comply to 4_ADCS_31_02.

 Launch date

 4_ADCS_31_02

 5_ADCS/DTS_31_0 Determination sensors design
 The Determination sensors shall comply to 4_ADCS_31_03.

 Level 4 ADCS requirements

 4_ADCS_31_03

 5_ADCS/MCU_31_01 MCU design constraints
 The microcontroller shall comply to 4_ADCS_31_01.

 Arina user's manual

 4_ADCS_31_01

 5_ADCS/MCU_31_02 MCU design constraints
 The microcontroller shall comply to 4_ADCS_31_02.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 24 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 Launch date

 4_ADCS_31_02

 5_ADCS/MCU_31_03 MCU design constraints
 The microcontroller shall comply to 4_ADCS_31_03.

 Level 4 ADCS requirements

 4_ADCS_31_03

 5_ADCS/PCB_31_0 PCB design constraints
 The ADCS PCB shall comply to 4_ADCS_31_01.

 Arina user's manual

 4_ADCS_31_01

 5_ADCS/PCB_31_0 PCB design constraints
 The ADCS PCB shall comply to 4_ADCS_31_02.

 Launch date

 4_ADCS_31_02
 5_ADCS/PCB_31_0 PCB design constraints
 The ADCS PCB shall comply to 4_ADCS_31_03.

 Level 4 ADCS requirements

 4_ADCS_31_03

 3.2 Thermal
 5_ADCS/ACT_32_0 Actuators thermal design
 The actuators shall comply to 4_ADCS_32_01.

 Level 4 ADCS specifications

 4_ADCS_32_01

 5_ADCS/ACT_32_0 Actuators thermal design
 The actuators shall comply to 4_ADCS_32_02.

 Level 4 ADCS specifications

 4_ADCS_32_02

 5_ADCS/ACT_32_0 Actuators thermal design
 The actuators shall comply to 4_ADCS_32_03.

 Thermal analysis

 4_ADCS_32_03

 5_ADCS/DTS_32_0 Determination sensors thermal design
 The determination sensors shall comply to 4_ADCS_32_01.

 Level 4 ADCS requirements

 4_ADCS_32_01

 5_ADCS/DTS_32_0 Determination sensors thermal

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 25 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 The determination sensors shall comply to 4_ADCS_32_02.

 Level 4 ADCS requirements

 4_ADCS_32_02

 5_ADCS/DTS_32_0 Determination sensors thermal
 The determination sensors shall comply to 4_ADCS_32_03.

 Thermal analysis

 4_ADCS_32_03
 5_ADCS/MCU_32_01 MCU thermal design
 The microcontroller shall comply to 4_ADCS_32_01.

 Level 4 ADCS requirements

 4_ADCS_32_01

 5_ADCS/MCU_32_02 MCU thermal design
 The microcontroller shall comply to 4_ADCS_32_02.

 Level 4 ADCS requirements

 4_ADCS_32_02

 5_ADCS/MCU_32_03 MCU thermal design
 The microcontroller shall comply to 4_ADCS_32_03.

 Thermal analysis

 4_ADCS_32_03

 5_ADCS/PCB_32_0 PCB thermal design
 The PCB shall comply to 4_ADCS_32_01.

 Level 4 ADCS specifications

 4_ADCS_32_01

 5_ADCS/PCB_32_0 PCB thermal design
 The PCB shall comply to 4_ADCS_32_02.

 Level 4 ADCS specifications

 4_ADCS_32_02

 5_ADCS/PCB_32_0 PCB thermal design
 The PCB shall comply to 4_ADCS_32_03.

 Thermal analysis

 4_ADCS_32_03

 3.3 Maintainability
 5_ADCS/ACT_33_0 Actuators maintainability
 The actuators shall comply to 4_ADCS_33_01.

 Level 4 specifications

 4_ADCS_33_01

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 26 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5_ADCS/ACT_33_0 Actuators maintainability
 The actuators shall comply to 4_ADCS_33_02.

 To survive storage and ground life

 4_ADCS_33_02

 5_ADCS/DTS_33_0 Determination sensors maintainability
 The determination sensors shall comply to 4_ADCS_33_01.

 Level 4 specifications

 4_ADCS_33_01

 5_ADCS/DTS_33_0 Determination sensors
 The determination sensors shall comply to 4_ADCS_33_02.

 To survive storage and ground life

 4_ADCS_33_02

 5_ADCS/MCU_33_01 MCU maintainability
 The microcontroller shall comply to 4_ADCS_33_01.

 Level 4 ADCS specifications.

 4_ADCS_33_01

 5_ADCS/MCU_33_02 MCU maintainability
 The microcontroller shall comply to 4_ADCS_33_02.

 To survive storage and ground life

 4_ADCS_33_02

 5_ADCS/PCB_33_0 PCB maintainability
 The PCB shall comply to 4_ADCS_33_01.

 Level 4 specifications

 4_ADCS_33_01

 5_ADCS/PCB_33_0 PCB maintainability
 The PCB shall comply to 4_ADCS_33_02.

 To survive storage and ground life

 4_ADCS_33_02

 4. Interfaces
 4.1 Structural
 5_ADCS/ACT_41_0 Magnetotorquers
 Magnetotorquers shall be located in perpendicular planes.

 Action on three axes.

 5_ADCS/ACT_10_02

 5_ADCS/DTS_41_0 Sun sensor location
 Sun sensors shall be mounted on the 6 faces, 1 sensor per face

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 27 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 Need 3 sensors to determine direction of the Sun at all times, need 6
 sensor heads to cover all possible directions.

 5_ADCS/DTS_10_02

 5_ADCS/DTS_41_0 Magnetometer location
 The magnetometers shall be placed at a distance at least
 greater than [xx]mm from the magnetotorquers plane.

 In order to avoid as well as it is possible disturbances.

 5_ADCS/PCB_41_0 PCB placement
 The placement of the PCB shall be optimized to be as distant
 as possible from the magnetotorquers.

 Magnetic perturbations on magnetometer

 4.2 Thermal
 5_ADCS/ACT_42_0 Magnetotorquers
 Magnetotorquers shall be thermally connected to the frame.

 TH

 4_ADCS_32_02

 5_ADCS/PCB_42_0 PCB
 The PCB shall be thermally connected to the frame.

 TH

 4_ADCS_32_02

 4.3 Electrical
 5_ADCS/ACT_43_0 Magnetotorquers supply voltage
 The magnetotorquers and their electronic shall use 3.3V [+/-
 7%].

 ADCS alimentation

 4_ADCS_43_01

 5_ADCS/ACT_43_0 Magnetotorquers connection
 The magnetotorquers shall be connected to ADCS board.

 Decrease number of interfaces.

 4_SC_10_02

 5_ADCS/DTS_43_0 Gyroscopes supply voltage
 The gyroscopes and their electronic shall use 3.0V[+/-2%].

 ADCS alimentation

 4_ADCS_43_01

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 28 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5_ADCS/DTS_43_0 Magnetometers supply voltage
 The magnetometers and their electronic shall use 3.3V[+/-
 7%].

 ADCS alimentation

 4_ADCS_43_01

 5_ADCS/DTS_43_0 Sun sensors supply voltage
 The sun sensors and their electronic shall use 3.0V[+/-2%].

 ADCS alimentation

 4_ADCS_43_01

 5_ADCS/DTS_43_0 Sun sensors connection
 The sun sensors shall be connected to ADCS board.

 Decrease number of interfaces.

 4_SC_10_02

 5_ADCS/MCU_43_01 Microcontroller supply voltage
 The microcontroller and its electronic shall use 3.3V[+/-

 ADCS alimentation

 4_ADCS_43_01
 5_ADCS/PCB_43_0 Board supply
 The main board shall be connected to the power bus and use
 use 3.3V[+/-7%].

 ADCS alimentation

 4_ADCS_43_01

 4.4 Data interfaces
 5_ADCS/CTL_44_0 Controller input data
 The controller shall be feed with the current state variables
 estimations (rotational speed vector and quaternion)

 FSW

 5_ADCS/DTS_44_0 Magnetometer master clock frequency
 The magnetometer shall use a master clock frequency in the range of [5]
 to [7.35] MHz.

 S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System report.

 5_ADCS/MCU_44_01 Microcontroller main bus interface
 The microcontroller shall be capable of communicating with
 the main data bus.

 Same data bus for the whole satellite

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 29 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4_ADCS_44_01

 5_ADCS/MCU_44_02 Microcontroller sensor interface
 The microcontroller shall be capable of communicating with
 each sensor.

 Anolog signal reading, and serial data interface reading capability.

 5_ADCS/MCU_10_02

 5_ADCS/MCU_44_03 TM
 The microcontroller shall generate TM with all the sensors.

 To provide housekeeping data

 4_ADCS_44_02

 4.5 Physical properties
 5_ADCS/ACT_45_0 Magnetotorquer mass
 Each coil shall weight less than [28] grams.

 Mass budget.

 4_ADCS_45_02

 5_ADCS/ACT_45_0 Magnetotorquer size
 Magnetotorquers external dimensions shall not exceed
 [70x80x5] mm on X, Y and Z axis in System Reference
 Frame.

 S&C.

 4_ADCS_45_01

 5_ADCS/DTS_45_0 Sun sensors dimensions
 The external sun sensors PCB dimensions shall not exceed
 [20x16x3.5] mm.

 S&C.

 4_ADCS_45_01

 5_ADCS/PCB_45_0 Card dimensions
 The external ADCS card dimensions shall not exceed
 [80x85x10] mm, and the value of [10] shall not be reached on
 the entire surface.

 S&C.

 4_ADCS_45_01

 5_ADCS/PCB_45_0 Card mass
 The ADCS card (PCB and components) shall weight less
 than [34] g.

 Mass budget

 4_ADCS_45_02

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 30 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 5. Environmental
 5.1 Thermal
 5_ADCS/ACT_51_0 Thermal environement
 The magnetotorquers shall survive the qualification
 temperature range [-45°C to +70°C].

 Thermal analysis

 4_ADCS_51_01
 5_ADCS/DTS_51_0 Thermal Environement
 The gyroscopes and magnetometers shall survive the
 qualification temperature range [-30°C to +60°C].

 Thermal analysis

 4_ADCS_51_01

 5_ADCS/DTS_51_0 Thermal Environment
 The sun sensors shall survive the qualification temperature
 range [-45°C to +70°C].

 Thermal analysis

 4_ADCS_51_01

 5_ADCS/MCU_51_01 Thermal environment
 The microcontroller shall survive the qualification
 temperature range [-30°C to +60°C].

 Thermal analysis

 4_ADCS_51_01

 5_ADCS/PCB_51_0 Thermal environment
 The PCB shall survive the qualification temperature range [-
 [-30°C to +60°C].

 The current temperature range is designed as [-20] to [60]°C

 4_ADCS_51_01

 5.2 Static and dynamic loads
 5_ADCS/ACT_52_0 Acceleration
 The magnetotorquers shall comply to 4_ADCS_52_01.

 Level 4

 4_ADCS_52_01

 5_ADCS/DTS_52_0 Acceleration
 The determination sensors shall comply to 4_ADCS_52_01.

 Level 4

 4_ADCS_52_01
 5_ADCS/MCU_52_01 Acceleration

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 31 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 The microcontroller shall comply to 4_ADCS_52_01.

 Level 4

 4_ADCS_52_01

 5_ADCS/PCB_52_0 Acceleration
 The determination sensors shall comply to 4_ADCS_52_01.

 Level 4

 4_ADCS_52_01

 5.3 Vacuum
 5_ADCS/ACT_53_0 Vacuum
 The magnetotorquers shall be able to operate under vacuum
 conditions.

 Space Environement

 4_ADCS_53_01

 5_ADCS/DTS_53_0 Vacuum
 The determination sensors shall be able to operate under
 vacuum conditions.

 Space Environement

 4_ADCS_53_01

 5_ADCS/MCU_53_01 Vacuum
 The microcontroller shall be able to operate under vacuum
 conditions.

 Space environement

 4_ADCS_53_01

 5_ADCS/PCB_53_0 Vacuum
 The PCB shall be able to operate under vacuum conditions.

 Space Environement

 4_ADCS_53_01

 5.4 Radiation
 5_ADCS/ACT_54_0 Total dose
 The magnetotorquers shall support a TID of maximum
 [20]kRad.

 Analysis using ESA Spenvis Tool.
 This is the value for 1 year in orbit.

 4_ADCS_54_01

 5_ADCS/DTS_54_0 Total dose
 The determination sensors shall support a TID of maximum
 [20]kRad.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 32 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 Analysis using ESA Spenvis Tool.
 This is the value for 1 year in orbit.

 4_ADCS_54_01

 5_ADCS/MCU_54_01 Total dose
 The ADCS MCU shall support a TID of maximum

 Analysis using ESA Spenvis Tool.
 This is the value for 1 year in orbit.

 4_ADCS_54_01

 5_ADCS/PCB_54_0 Total dose
 The PCB shall support a TID of maximum [20]kRad.

 Analysis using ESA Spenvis Tool.
 This is the value for 1 year in orbit.

 4_ADCS_54_01

 6. Operational
 6.1 Autonomy
 5_ADCS/ACT_61_0 Life time
 The ADCS magnetotorquers shall be designed to operate
 during [4] months including commissioning and nominal
 activities. The lifetime can be extended to [1] year.

 Mission duration

 4_ADCS_61_01
 5_ADCS/DTS_61_0 Life time
 The ADCS determinations sensors shall be designed to
 operate during [4] months including commissioning and
 nominal activities. The lifetime can be extended to [1] year.

 Mission duration

 4_ADCS_61_01

 5_ADCS/MCU_61_01 Life time
 The MCU shall be designed to operate during [4] months
 including commissioning and nominal activities. The lifetime
 can be extended to [1] year.

 Mission duration

 4_ADCS_61_01

 5_ADCS/PCB_61_0 Life time
 The ADCS PCB shall be designed to operate during [4]
 months including commissioning and nominal activities. The
 lifetime can be extended to [1] year.

 Mission duration

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 33 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 4_ADCS_61_01

 6.2 Control
 5_ADCS/ACT_62_0 Magnetic incompatibility
 The magnetotorquers shall be turned off during
 measurements with magnetometers.

 To avoid disturbances

 5_ADCS/DTS_23_06

 5_ADCS/CTL_62_0 Controller switch-on time
 The attitude controller shall be switched on just after antenna
 deployment.

 B. Graf
 It must be after meaningful state variables are available from the

 4_ADCS_10_04
 5_ADCS/MCU_62_01 Microcontroller
 The microcontroller must be able to receive a data request
 from CDMS at all times when not in the “OFF” mode.

 To perform attitude determination and control

 4_ADCS_62_01

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 34 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

3 DESIGN ASSUMPTIONS AND APPROACH

3.1 Approach

First of all a complete review of the phase B documentation has been done; a greater attention has
been paid to the reports about the ADCS hardware and the magnetometer report (see [R1] and
[R2]).

Then the MT have been redesigned. In order to do that, a review of the disturbances calculation has
been performed to ensure a design with right values. Before building some MT, they have been
recalculated with the new parameters (dimensions).

Because there were still some mistakes on the previous ADCS main board, a revision has been done
in order to test its functionalities, particularly the sensors and the actuators.

Then the microcontroller programming was started; tests and measurements have been done with
the MM, MT, SS and gyroscopes.

In parallel some other tasks have been performed, such as the development of an Earth’s magnetic
field model (see [R3]), the development of some sensors and actuators model and a study of the
possibility to use permanents magnets to control the satellite.

At the end, a new complete review of the ADCS board has been started on in order to finalize its
design for the SwissCube Integration Model.

It is important to mention that the hardware was not selected (in phase B) only on the
performances, but on availability, compatibility with the system (voltage) and physical characteristics
such as size and mass criteria.

3.2 Disturbances

The disturbances analysis has been refined at the beginning of phase B (see [R1]) and then checked.

The disturbances torques were separately calculated in the very worst case for every altitude between
400km and 1000km. Very worst case means that each parameter was taken at its maximal value. For
this reason no margin was added at this point. The major disturbance factor is aerodynamic up to
600km. Figure 3-1 summarized the results (see Appendix E.1 for Matlab scripts).

Regarding the dimensioning of the actuators, twice the worst case was taken. The worst case

happens at the altitude of 400km. The torque that the actuators shall produce is 2⋅3.6e-7=7.2e-7Nm
(see section 4.3.1 for more details). For example, the torque used for the actuators dimensioning is
twelve times greater than the disturbance torque at the altitude of 700km [R1].

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 35 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 3-1 : Disturbances in function of altitude

3.3 Hardware assumptions

 The ADCS microcontroller will not support determination and control algorithms. It will be
used to collect the sensors values and to store them onboard until the main controller
(CDMS) will use them. It will also be used to control the actuators once the main computer
has calculated the command values.

 All data are sent to the ADCS using the main I2C bus. These data mainly come from the
CDMS and the EPS.

 The ADCS board has only one supply voltage of 3.3V thanks to the EPS design. Thus its
components must comply with that.

 The ADCS is not a critical system, therefore no redundancy is needed. But to ensure reliable
operation, current limitations must be implemented for each electrical wire going to a sensor
or an actuator. This prevents the shutdown of the whole ADCS board if short circuits occur
(thanks to EPS overload protection).

 The MT will be glued inside the faces of the satellite. They will be then subject to high
temperature variation. According to values found in [R11] plus a margin of 10°C, the MT
should sustain a temperature between -45°C and +70°C.

 With a margin of 20°C, the temperature range for the ADCS board will be -30°C to +60°C
(it is inside the satellite).

Figure 3-2 shows the exploded view of the actual mechanical parts of the satellite. We can see that
the MT are located on the –X, +Y and –Z sides.

Figure 3-3 shows the last version of the ADCS electrical block diagram. It explains the architecture
of the ADCS.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 36 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 3-2 : Swisscube exploded view and frame of reference

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 37 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 3-3 : ADCS present electrical block diagram (this version has not been built yet)

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 38 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

4 TECHNICAL DESCRIPTION

4.1 ADCS main board

4.1.1 Board design

The first version of the ADCS board was designed by Bastien Despont in the previous project (see
[R1] for more details). All components were chosen and a PCB was built. The preliminary tests
indicated there were some errors on the PCB, but thanks to the help of an adapter the operation of
the microcontroller could be tested. No other functional tests were done on this board during the
previous project.

At the beginning of this project, a first review of this board has been done in order to correct some
errors, mainly in the programming interface, the PWM/MT outputs and the MM connections. The
electrical circuit and the component placement on the PCB can be found in Appendix A.1. This
board is still a test board; so many components such as jumpers will be suppressed in the next
revision. The board is shown in Figure 4-1:

Figure 4-1 : Current ADCS board with some error corrections (see section 4.1.4)

A power supply connector (EXT_SUPPLY) has been added in order to be able to supply the board
with an external stabilized power supply. It is also possible to use the power provided through the
programmer/debugger by changing a jumper position on the board (POWER_TYPE). Be careful
with this jumper (it must be in the right position for each power supply possibility) and the
polarity on the power supply connector because there is no protection. When using the
parallel TI programmer (MSP-FET430PIF), the supplied voltage is always 2.85V. This voltage can
be set in the project properties (Project→Properties→Debug Properties→Target Voltage) when

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 39 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

using the USB TI programmer (MSP-FET430UIF) and Code Composer Essentials v2. The available
power is small in these two cases.

Two LED were also added in order to give very helpful visual information; the first (LED0)
indicates there is a power supply connected and the second (LED1) is connected to a
microcontroller digital output, which it is very useful for the programming and debugging. I
strongly recommend keeping these LED in the next design (they simply will not be mounted
on the final satellite board).

Two 0Ω resistors were added in order to be able to bypass neatly the latch-up protections to assure
correct operation of the board for the tests. The connector names were also printed in order to
facilitate the use of the board.

4.1.2 MSP430F16x microcontrollers properties

The microcontroller used on this board is currently an MSP430F169 from Texas Instruments, but
an MSP430F1611 can replace it without any trouble or modifications (this one will be used for all
the satellite subsystems).

The internal oscillator of the MSP (DCO; for Digitally Controlled Oscillator) is used to provide the
clock, because high frequency oscillators and crystals have really high power consumption.
Moreover they are breakable components and it is difficult to find some ones satisfying the
temperature requirements.

The DCO frequency can be set by software, but the nominal frequency has a big uncertainty
(≈15%) and very strong temperature dependency (-0.4%/°C). The maximum frequency is also
limited to about 5MHz. In order to improve these characteristics, an external resistor (Rosc) can be
used to supply the DCO. A precision resistor with a 100kΩ value is recommended (a 0.1%
25ppm/°C resistor is used in our case), but because there is almost no information available on
influence of the resistor on the frequency setting, some tests must be done (see section 5.1.1). With
this resistor the frequency dependence in temperature diminishes to about -0.1%/°C (see Figure
4-2) and the maximum frequency is increased.

Figure 4-2 : DCO frequency variation versus temperature and external or internal resistor [R16]

But keep in mind that the nominal error is still big (15%) and the maximum frequency the
microcontroller can withstand is limited by the voltage; although the DCO can go faster
(≈10MHz), for a 3.3V supply we have fMCLK_max=7.35MHz and for a 3.0V it is reduced to 6.7MHz

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 40 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

(see datasheet). Be careful not to exceed this value because of the temperature drift! An error
has been done in the previous project concerning this frequency. Increasing the CPU frequency also
increase the power consumption.

In the case of the ADCS board, a frequency as stable and as high as possible is needed for the
MCLK of the MM (see section 4.2.1).

Although all subsystem must know the time, a low frequency watch crystal is not needed, because
the time will be synchronized regularly for the whole satellite using I2C messages. For small time
periods the committed error (because of the DCO use) will be small. It is possible to correct the
time clock temperature drift (and not the DCO frequency) by changing the period of the clock timer
(see section 4.1.3) when reading the temperature with a sensor.

The microcontroller has an internal 12-bit analog to digital converter (ADC). It is mainly used to
measure the sun sensors, gyroscopes and temperature sensors signals. This represents about 30
different signals. Because the microcontroller has only 8 analog inputs, 4 external analog
multiplexers AD708 are used. They have an 8Ω conduction resistance and a 30ns switching time.
This time is smaller than the microcontroller clock period (if fMCLK≤33MHz), so no software waiting
time is needed when switching from an input to another. But if low-pass filter are present between
the multiplexers and the microcontroller (this is not the case for the moment), it is necessary to wait
until the capacitor is fully charge before starting the AD conversion.

For the moment, the internal MSP 2.5V voltage reference is used for the ADC. An external
capacitor is needed on pin 7 to ensure its correct operations. It has been forgotten in the ADCS
board. This reference has a quite bad accuracy (4%, ±100ppm/°C), therefore it could be
useful to have another more precise external voltage reference in the next design, because
this error is reported to the sensors measurements.

Figure 4-3 shows the ADC equivalent circuit. Some time is needed to charge correctly the input
capacitor before starting the conversion.

Figure 4-3 : Analog input equivalent circuit of the MSP430 ADC [R16]

This sampling time can be set in software. It is related to the external source resistance and its
minimum value can be computed using this formula:

𝑡𝑠𝑎𝑚𝑝𝑙𝑒 > 𝑅𝑠 + 𝑅𝐼 ⋅ ln 213 ⋅ 𝐶𝐼 + 800𝑛𝑠 (3.1)

With RI=2kΩ and CI=40pF. For Rs=0, tsample>1.5μs. To measure the internal temperature sensor
voltage, the sampling time must be >30μs.

4.1.3 Software

The first version of the ADCS software has been programmed during this project.
Recommendations for microcontroller programming in C code can be found in Appendix E.3.1.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 41 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

This software is able to do measurements with all sensors (MM, SS, GYR and temperatures sensors)
and can generate 6 PWM outputs for the MT. None temperature drift is corrected for the
moment and all sensors and actuators are switched on at the beginning of the program. They
should be switched off when it is not necessary to reduce the power consumption. Precautions
must be taken with the startup time of each component! For example the LM94022 startup
time is about 10ms.

The microcontroller stays almost all the time in low-power mode in order to reduce power
consumption. Low power mode LPM0 must be used, because all over modes switches off the
DCO, so the microcontroller will never wake up (LPM1=LPM0 if DCO is used). Timer A is used as
the ADCS time clock and to wake up the microcontroller with a regular time period. Interrupts also
wake up the microcontroller, but it will automatically return in sleep mode after the interrupt service
routine has been executed if there is no LPM0_EXIT command.

The architecture of this program is shown in Figure 4-4.

The I2C and communication protocol have not been implemented for the moment.

The source code can be found in Appendix E.3.

Measurements can be stored in the microcontroller non volatile Flash memory using functions
provided in Appendix E.4. Although the complete procedure is quite complicated, this is very useful
to do measurements and recover them later without having the programmer connected (for example
if the PCB is in a vacuum chamber or on a rotation stage).

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 42 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Main loop

Reset

Init I/O ports

Init Peripherals
and Timers

Init Sensors and
other

peripherals

Enable MM

Init MT

Enable interrupt

Increment
ADCS_Time

Measure period
reached

New measure
available

Enter Low
Power Mode

(LPM0)

Exit Low Power
Mode (LPM0)

NO

NO

Start MM
measure

Do 6x SS
measure

Start Gyro
Measure

Start
temperatures

measure

YES

Compute and
store sensors

corrected
values

SS (6x)

Gyro

Temperatures

YES

Correct
TIMER_A period

(temperature
drift)

MM

Send/Receive
MM data

ADC

SPI

ADC

ADC

SPI

Enable SS, Gyro,
MT, Temp

SPI

TIMER_A
Interrupt

ADC
Interrupt

SPI
interrupt

Port2
interrupt

Figure 4-4 : ADCS actual test software architecture

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 43 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

4.1.4 Second ADCS board revision

A second revision of the ADCS board has been started in order to finalize the design for the
SwissCube Integration Model. The actual ADCS electrical block diagram is shown in Figure 3-3.

The main changes and errors corrections are:

 Introduction of LDO regulators to supply sensors and actuators in order to stabilize the
voltage and to limit the current in case a short circuit occur.

 The temperature sensors are now LM94022.

 The multiplexers are used to read temperature sensors.

 A 10μF capacitor should be placed between MSP pin7 and GND to ensure ADC correct
operation.

 The MCLK signal for the magnetometer must use the SMCLK signal from the MSP (pin
49), because the MCLK from pin 48 is stopped when the microcontroller is in sleep mode.

 All jumpers must be removed.

Other changes must still be investigated:

 An external voltage reference should be used for the ADC.

 A circuit to measure the MT currents could be added (see section 4.3.1.4).

 Low-pass filters could be added before or after the multiplexers in order to reduce the noise
on the SS (the wires are quite long and they are not shielded); we have Ron_AD708 < 12Ω and
Rout_AD8552 ≈ 30Ω@3mA, thus a simple 1μF capacitor after the multiplexer connected to
ground would create a low-pass filter with a cut-off frequency around 5kHz, but it will be
necessary to wait until this capacitor is fully charge when switching the multiplexers
channels.

The PCB layout will have to be completely redesigned for a 6-layer IS-420 substrate. The
components and connexions must be placed according to the new available space on the board (see
Appendix A.3).

4.2 Sensors

4.2.1 Magnetometer

4.2.1.1 Characteristics and parameters

The selected magnetometer (MM) is a 3-axis high sensitivity Hall device: the AK8970N from Asahi
Kasei. It is a digital sensor and it uses an SPI interface to communicate with the microcontroller.
Thanks to that many parameters are configurable:

 The internal amplifier gain, therefore the sensitivity.

 The offset using the internal digital to analog converter.

 The integrator time, therefore the sensitivity, noise and measurement time.

All this parameters are stored in internal registers (not in the EEPROM), so they have to be resend
each time the MM is shut down.

This sensor has an internal temperature sensor, an EEPROM to store factory settings (only) and
needs a high frequency clock signal for the measurements (MCLK). It can also generate an interrupt
using a digital output (INT) when the measure is complete. It uses 8-bit values, so the resolution,
measurement range or offset are limited (256 different values). Figure 4-5 shows its architecture:

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 44 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 4-5 : AK8970N block diagram

This sensor has been characterized during the previous semester project using a LabView interface
(see [R2]). Here is a summary of this report and the remaining tests:

 This sensor works with a MCLK frequency greater than 3MHz, although the datasheet
indicates a minimum frequency of 11MHz.

 This sensor has a good linearity for all axis.

 There is a strong offset drift with temperature which is different for each axis. The
sensitivity also changes with the temperature. The measured noise was quite big for a
specific temperature and specific axis (40°C, X and Z axis only). This is quite strange and
some measurements should be done with another sensor.

 Some vacuum tests have been done and conclude there is a quite big offset drift. Further
tests should be done because the test conditions were not properly defined.

 An integrator time setting of “20ms” reduce the noise level for an identical sensitivity as with
the “10ms” setting.

 All tests have been done using a LabView interface and a sine wave MCLK. So the MM
must be interfaced with the ADCS microcontroller and the whole system operation must be
characterized (the microcontroller generates a rectangular wave MCLK).

 There was an error in the requirements: the magnetic field rang is ±60μT and not ±30μT
(see [R3], margin 5μT)! Thus some conclusions were wrong, especially those concerning the
gain and the measurement resolution; the maximum gain/sensitivity cannot be used.

 A MCLK frequency of 5MHz has been advised because it seems to provide a higher
sensitivity. Because of the error in the requirements, this is no more relevant. A higher
frequency is desirable because it is less fathered to the nominal MCLK value (11MHz) and it
can reduce the measurement time. As we have seen in the previous section, the
microcontroller cannot generate a frequency higher than 7.35MHz.

 The internal temperature sensor and the interrupt capability (INT pin) have not been
tested.

 The measurement time has not been measured.

 The offset configuration has not been characterized. This is important because a
permanent magnet could be used to control the satellite, therefore it could saturate the MM.
This setting must also be used to correct the temperature drift.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 45 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

4.2.1.2 Electrical circuit

The MM is not supplied through an LDO and uses the 3.3V ADCS power supply. Although an
LDO reduce the noise and stabilize the voltage, the SPI interface may not work properly, because
the MM would generate 3.0V signals and the microcontroller 3.3V signals. Moreover the maximum
voltage which can be applied on the MM pins is Vdd+0.3V=3.3V, so there is no margin.

The MM can currently be completely switched off by a NC7SZ66 switch (a simple MOS transistor
could also have been used). This functionality is not really useful, because the MM stays in low-
power mode and has a power consumption of only 5μA when it performs no operations (it is 13mA
when measuring).

4.2.1.3 Software

Software to configure and do measurements with the MM has been programmed during this project.
The SPI interface of the microcontroller has been programmed in order to send commands and
settings to the MM and then receive the measurements results. The clock signal is also provided by
the microcontroller when it is needed (microcontroller SMCLK output, MM MCLK input). An
interrupt is generated when the measurements are completed (the main program runs in parallel with
the measurements).

The MCLK frequency used should be configured into the MM with a specific command (register
MD2, address 0xF4). Because the frequency used is theoretically not supported by the MM, the right
MM setting does not exist. Therefore the setting for the lowest frequency has been used; D0-
D3=0000 which correspond to an 11.2896MHz MCLK (we have ≈6.5MHz).

The overall software works well, but it must be completed about some particular points:

 The MT must be switched off when the MM is measuring in order to simplify the
offset correction and reduce the MM errors.

 The offset and sensibility drifts corrections, because of the temperature variation, have not
been implemented for the moment.

 The actual software uses some “while loops” to wait until the SPI has sent a command to
the MM; a maximum waiting time should be implemented, because if the MM does not
respond (for example because of a malfunction) the overall ADCS program execution is
stuck in this loop. So this should be completed in order to have a better reliability.

The source code can be found in Appendix E.3.3.

4.2.1.4 Model for determination algorithms

A MM model has been done to be used in the control and determination algorithms simulations. It
simply reproduces the way the MM do the measurements: all 3-axis are measured one after the
other. This effect cannot be completely neglected if the dynamic is very high (in principle it is not
our case), because as we will see in section 5.2.1, the measurement time is quite long.

4.2.2 Gyroscopes

The MEMs gyroscopes IDG-1000 or IDG-300 from InvenSense will be used. They work with a
2.7V to 3.3V power supply and have a power consumption of 8.5mA. Each chip contains a 2-axis
gyroscope, so 2 chips are necessary to obtain measurement in the 3 axis of rotation.

The 1st chip is located on the ADCS board and measures the +X and +Z angular rate. The 2nd is on
the Connection Board which is perpendicular to the ADCS board and measures the +Y angular

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 46 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

rate. Since the measures are temperature dependant, there is a temperature sensor LM94022 near
each gyroscope.

A single 3V low-noise LDO regulator TPS79330 is used as power supply for the two GYR. It acts
like a switch, stabilizes the voltage, reduce the noise and create a current limitation if a short circuit
occur on the wires used to supply the 2nd gyroscope (Isc≤600mA). According to the datasheets, the
startup time is about 400ms for the IDG-1000, 200ms for the IDG-300 (and 100μs for the LDO).
This is very long and precautions must be taken when switching on and off these sensors to reduce
power consumption (be also careful if the measurement rate is faster than 1Hz). These timings
should be verified with measurements (see [R4]). The startup power consumption should also
be checked in order to see if it is advantageous or not to switch on/off the GYR.

The analog outputs are read directly with the 12-bit ADC of the ADCS microcontroller (there is no
multiplexer). This ADC can only measure a voltage between 0 and 2.5V, thus a part of the measure
range can be lost in some particular cases (the gyroscope output is between 0 and 3V), but this also
increase the sensitivity. A low-pass filter is added in order to lower the noise; its cut-off frequency
must be adapted to the dynamic of the satellite to obtain an efficient filtering. For more details
about the GYR, see [R4].

4.2.2.1 Software

The gyroscope software has been programmed; all 3 analog GYR signals are measured one after the
others as quickly as possible using the ADC in sequence mode. When these measures are started, the
main program continues to run in parallel and then the results are recovered.

The temperature drift correction has not been implemented for the moment.

Be careful to configure correctly the ADC sampling time according to the impedance value of
gyroscope low-pass filter (see equation (3.1)).

The source code can be found in Appendix E.3.5.

4.2.3 Sun Sensors

4.2.3.1 Description

The sun sensors (SS) are provided by DTU. They can measure the sun direction on 2 axis (2 angles).
One sun sensor stands on each face of the satellite (6 at all). Their output is a current which is
converted into an analog voltage with an operational amplifier (AD8552). Each sun sensor has 4
outputs: 2 references related to the ambient luminosity and other conditions and 2 signals related to
the sun direction.

The 24 signals are read trough 4 analog multiplexers AD708 with the 12-bit ADC of the ADCS
microcontroller. The ADC can only measure a voltage between 0 and 2.5V, so the current-voltage
converter gain must be adapted. To ensure a better thermal behavior, the converter feedback
resistor must be a high precision resistor (0.1%, 25ppm/°C).

Because the SS are passives sensors, only the operational amplifiers need power; it represents a peak
current about 26mA for the 24 amplifiers. This is supplied through a 3V low-noise LDO regulator
TPS79330 which stabilize the voltage and limits the short-circuit current for the power wires
(Isc≤600mA). The current limit for the signal wires is smaller due to the AD8552 short-circuit
current (Isc≤30mA@3V).

The startup time is about 10μs for the AD8552 and 100μs for the LDO. These timings should
be verified with measurements and must be taken into account in software in order to
reduce the average power consumption.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 47 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

For more details about the SS, see [R5].

4.2.3.2 Software

As the ADC is used, the SS software is very similar to the one for the GYR and the temperatures
sensors.

The main difference is that all 4 signals are measured in a sequence, then the multiplexers are
switched and the next 4 signals are measured. This operation is done for each SS. Thus the
measurement is longer and the program waits until all SS measures are completed before returning
in the main loop.

Be careful to configure correctly the ADC sampling time according to the AD8552 output
impedance value: according to equation (3.1) and with Rs=40Ω, the ADC sampling time is
tsample>1.5μs.

The source code can be found in Appendix E.3.6.

4.3 Actuators

Since the 1-axis inertial wheel has been suppressed, because of control problems, the
magnetotorquers are the main actuators and the only active actuators of the SwissCube.

Because we have some trouble controlling the satellite, the possibility of using passive actuators,
such as permanents magnets, has also been studied. This will be presented in this section (4.3.2).
Others passive control methods exist, but they cannot be applied for the SwissCube:

 Gravity gradient: this technique uses the gravity force. A torque is produced if the satellite
has an asymmetric mass repartition (the moment of inertia along one axis is larger than along
the others). Because of the high symmetry of a CubeSat, this torque is very small and thus it
can’t be used to constrain orientation of the satellite.

 Another technique is to let spin the satellite along one axis. This is often used in conjunction
with the gravity gradient. This method cannot be used too because it requires a high
spinning rate and ensuring a good quality of the images taken by the SwissCube’s camera
becomes difficult.

4.3.1 Magnetotorquers

4.3.1.1 Design

The MT are coils which simply interact with the Earth’s magnetic field (EMF). There are 3 identical
MT on the satellite (to simplify the design and control). It’s also possible to suppress one to gain
mass if a magnet is used.

The MT are characterized with their dipole magnetic moment:

𝜇 = 𝑁𝐼𝐴 [𝐴𝑚2] (3.2)

I is the current [A], N the number of turns and 𝐴 the surface vector of the coil.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 48 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 4-6 : Magnetotorquer schematic [R1]

The produced torque is expressed by:

𝑀 = 𝜇 × 𝐵𝑒𝑎𝑟𝑡
 [𝑁𝑚] (3.3)

With 𝑩𝒆𝒂𝒓𝒕𝒉 ≈ 𝟐𝟓𝝁𝑻 at 400km altitude. This is a mean value; keep in mind the minimum local
value is really 19.5μT (see [R3]), so the torque could be smaller in particular locations.

The MT are designed to be able to produce the double of the maximum perturbation torque

(=2⋅3.6⋅10-7Nm). The worst case for the design is for an altitude of 400km and at the equator:

 The perturbations are the biggest for 400km altitude (see Figure 3-1).

 The EMF is smaller at the equator.

 Although the EMF decreases if the altitude increases, its variation is smaller than the one of
the perturbations, so the worst case is really for 400km altitude.

The current in the coil is determined using the available power and the voltage. To reduce the total
mass of the magnetotorquer, the enclosed area should be maximized and the number of turns
minimized. The maximum current density was set to 2A/mm2, even if it is possible to go up to
8A/mm2. This is a security factor to avoid a wire burning due to the absence of convection. The
wire used is a CAB-200 non space-qualified copper wire with a diameter of 150μm. An aluminium
wire is not useful as explained in [R1].

The MT are glued on the outer panels of the satellite. To ensure the mechanical solidity, precise
outer dimension, acceptable outgassing properties and to protect the coil, the whole
magnetotorquer is moulded with a space-qualified epoxy resin.

The coils are designed iteratively using a Matlab script (heart.m, results in Coil_results.m, see
Appendix E.2). The area A used to compute the coil is the inner area, thus the coil will produce a
slightly greater torque than twice the perturbation torque.

Maximal disturbance torque (design margin of 2) 0.72⋅10-6Nm

Magnetic field at 400km (mean value) 25μT

Voltage Vcc 3.3V or 3.0V

Available Power P0 50mW

Nominal Current I0 15mA

Maximum current density Jmax 2⋅106A/m2

Copper resistivity ρ0 (at 20°C) 1.72⋅10-8Ωm

Temperature change coefficient α 3.9⋅10-3K-1

Magnetic dipole moment μ 2.85⋅10-2Am2

Wire CAB-200

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 49 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Wire diameter 150μm

Filling rate (measured on the previous MT) 0.4

Outer maximum dimensions 70x80x5mm

Epoxy thickness 0.2 and 0.5mm

Table 4-1 : Magnetotorquer parameters and requirements

Outer dimensions (without epoxy) lout x Lout x w 69x79x4.6mm

Inner dimensions (without epoxy) lin x Lin 60.8x70.8mm

Mean dimensions l x L 64.9x74.9mm

Cross-section dimensions (without epoxy) h x w 4.1x4.6mm

Number of turns N 427

Coil resistance R0 (at 20°C) 116Ω

Table 4-2 : Actual Magnetotorquers theoretical characteristics

Because the wire has a standard diameter, the current in the coil can be greater than 15mA (up to
140mA). Thus the torque produced by the magnetotorquer is actually only limited by the
power consumption and voltage.

The resistance of the coil is computed using the following equation:

𝑅 = 𝑁 𝜌0(1 − 𝛼 𝑇 − 𝑇0)
 𝑙𝑐𝑢
𝑆𝑤𝑖𝑟𝑒

 (3.4)

Because the temperature variation is very high (T∈[-45, +70]°C on the panels), the coil resistance
varies from 85Ω up to 140Ω ! This variation must be compensated.

A resistor RMT must be put in series with the coil to ensure the right current (15mA). This can also
be done or improved using software.

4.3.1.2 Coil resistance drift compensation

1. The 1st idea was to use an NTC thermistor for RMT and to put it on the panel of the satellite
near the MT to compensate its variation. But this type of component uses semiconductors
and has a strongly non linear variation for temperatures below 0°C (see Figure 4-7):

Figure 4-7 : Resistance of a 100Ω EPCOS NTC versus temperature

0

1000

2000

3000

4000

5000

R
 [

o
h

m
]

T [°C]

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 50 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Therefore this type of resistor cannot be use.

2. As temperature sensors are present on the outer panels of the satellite, a 2nd option is to use
their measure to adapt the MT PWM rate (and the mean current) dynamically as a function of
temperature. Thus RMT is computed using the maximum coil resistance:

𝑅𝑀𝑇 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ≤ 𝑅𝑀𝑇 =
𝑉𝑐𝑐

𝐼0
− 𝑅𝑚𝑎𝑥 (3.5)

For Vcc=3V, I0=15mA and Rmax=140Ω, we obtain RMT=61Ω and RMT normalized=56Ω.

This solution is very simple and it does not need additional hardware, but it has some
disadvantages: it does not measure the current, the temperature might not be completely
homogenous and it introduces some time constants (due to sensors and MT thermal
conductions and thermal capacities).

These temperatures sensors belong to the EPS system, so the temperatures have to be sent to
the ADCS using the I2C main bus.

3. The 3rd option is to measure directly the current using an operational amplifier measuring the
voltage between the RMT terminals for each of the 3 MT. These 3 signals are connected to the
multiplexers (AD708) and are measured by the 12-bit ADC of the ADCS microcontroller.
Then a simple P or PID regulator controls the PWM rate to adapt the current and the
produced torque.

This solution is more complex and requires more hardware and so a higher power
consumption. Cautions must also be taken with the number of PWM steps (see 4.3.1.5).

For the moment, the 2nd option has been chosen. To ensure good temperature homogeneity, a
thermally conductive epoxy should be used. Another problem has appeared here: thermally
conductive space-qualified epoxies have a high viscosity. Then it is hard to mould the coil and some
bubble may stay in the resin. This can degrade the outgassing properties.

4.3.1.3 MT manufacturing

The MT are quite complex to build. They have been built by Roland Dupuis from the AEM (Atelier
d'électromécanique) at the EPFL (see chapter 8).

First, the winding is done using a specific winding stand with the coil dimensions (see Appendix
B.2). Then, the coil is heated in an oven to bond the wires together (see Figure 4-10).

Some MT have been moulded with the EPO-TEK 920 epoxy (see Figure 4-8 and Figure 4-9)
provided by Polyscience AG. After have mixed and dropped the resin, the mould must be put into
vacuum (for about 1h) to decrease the number and size of bubbles. Then the epoxy is cured in an
oven (about 80°C during 5-6h; the lower the temperature, the smaller the remaining constrains).

At the end, we obtain MT with precise outer dimension (except on the top because the mould is not
closed; see Appendix B.3). It is very rigid. The resin becomes very hard, but because of that it is
slightly brittle. Unfortunately, many bubbles remain in the resin. The final mass is 28g per
magnetotorquer.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 51 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 4-8 : Finished/moulded MT view. The small PCB prevents the break of the copper wires during the
moulding and facilitates the soldering.

Figure 4-9 : MT detailed view. A break can be observed
in the corner.

Figure 4-10 : Coil without epoxy resin. The small
wires help to maintain the winding. They are also

used to centre the coil in the mould.

4.3.1.4 Electrical circuit

The MT are powered through H-Bridges: the microcontroller generates PWM signal and the current
is amplified using the H-Bridges. Figure 4-11 shows the schematic:

icoil
Vcc

ubridge
RMT

CMT
L

R
ucoil

PWM+

Gnd

PWM-

H
-B

ri
d

ge

Figure 4-11 : MT electrical schematic

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 52 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

RMT limits the maximum current. An optional filter is made using the capacitor CMT; if it is put on
the ADCS board, it lowers the current variation in the wires between the PCB and the MT (create a
2nd order filter for current and 1st order for voltage, see section 5.4.2).

Simple or double PWM can be used:

 For simple PWM, only one of the PWM+ and PWM- signals is a PWM. The other is kept
low. The current direction is set inverting the 2 outputs functions.

 For double PWM, the PWM+ and PWM- signals are complementary: one is low and the
other is high. If the PWM rate is higher than 50%, the mean current is in one direction and if
it is smaller than 50% the current is in the other direction. This PWM mode is often used to
control motors because it allows active breaking.

In the previous project, the Si-9987 H-Bridges were selected, but its datasheet mentioned a minimal
operating of 3.8V and we will have only 3.0V in the new design because the power will be supplied
through an LDO TPS79330 to limits the maximum current in case of a short circuit in a wire.
Although these H-Bridges seems to work up to 2V@20°C (see section 5.4.2), this has not been
tested for different temperatures and it is probably not a good idea to use this component.

It is very hard to find low-voltage and low-power H-Bridges, but finally another one has been
found: the A3901 from Allegro Microsystems. This component contains 2 H-Bridge per package, so
only 2 chips are needed. But it is important to mention its minimal operating temperature is -
20°C according to the datasheet which does not satisfy the -30°C of the requirements. A margin of
20°C has been taken for the requirements with the values given in the Thermal Report [R11].
Therefore I think it would not be a problem. Measurements should be done to check if this
component still works at -30°C.

In case of option 3 for the resistance drift, the 3 MT currents can be measured through the 3 RMT
using 3 differential amplifiers with offset circuits shown in Figure 4-12:

Figure 4-12 : Current measure circuit proposal

With R1=R3, R2=R4 and C2=C4 we obtain the following equation for the output voltage:

𝑣𝑜𝑢𝑡 =
 𝑍2

𝑅1
 𝑣2 − 𝑣1 + 𝑉𝑟𝑒𝑓2 =

𝑅2

𝑅1

1

1 + 𝑗𝜔𝑅2𝐶2
 𝑣2 − 𝑣1 + 𝑉𝑟𝑒𝑓2 (3.6)

Thus with Vref1=2.5V, the reference voltage for the ADC, and Vref2=Vref1/2=1.25V, negative and
positive currents can be measured. C2 and C4 create a first order optional filter and C6 stabilizes Vref2.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 53 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

The ratio R2/R1 sets the gain and must be chosen according to the RMT value to ensure an output
range of 2.5V. Caution must be taken choosing the resistors values to ensure small leakage

currents and measurement errors: we must have icoil≫iR1,3 and iR5≫iR4. These currents must be
small to have a small current consumption; be careful with the input impedance of the operational
amplifier if resistors value is high!

The 3 output voltages vout can be measured using the microcontroller 12-bit ADC through the
analog multiplexers (3 different multiplexers, input S8).

As we see the current measure adds a lot of components (3 times this circuit), and it is why the 2nd
option has been chosen for the moment. Maybe some chips directly do this circuit function
(differential amplifier with offset) with higher input impedance (see instrumentation amplifiers).
Further research must be done on this circuit.

4.3.1.5 Software

The 6 PWM outputs are made using the Timer_B7 Compare peripherals of the microcontroller.

The PWM frequency must be chosen to ensure an almost constant current in the coils and to lower
the perturbations in other lines. To avoid mechanical resonance too, the PWM frequency must be
greater than 1kHz, because it correspond to the higher frame natural frequency (see [R15]).

The maximum frequency is limited by the DCO frequency (fMCLK) and the number of increments (or
steps) N:

𝑓𝑃𝑊𝑀 ≤
𝑓𝑀𝐶𝐿𝐾

2𝑁
 (3.7)

With fMCLK=6.5MHz and N=100, we obtain fPWM≤32.5kHz. N defines the number of output
possible states and then the precision of the PWM setting. This number must not be too small,
particularly if a current regulator is used!

Symmetric pulses are currently used for the PWM (Timer_B Up/Down mode), but the maximum
frequency can be 2 times greater if non-symmetric pulses are used (Time_B Up mode).

The actual software does not compensate the temperature variation (it does not provide a current
regulator either for the 2nd option). Be careful with the MM; the MT must be switched off while
the MM is measuring. Because this time is quite long, the PWM rate should be corrected to ensure
the accurate mean current according to the measure frequency.

The source code can be found in Appendix E.3.4.

4.3.1.6 Model for control algorithms

A simple model has been done with Matlab with the actual MT characteristics (see Table 4-1 and
Table 4-2). It considers 3 perpendicular coils and simply adds a Gaussian noise to take into account
the small current uncertainty (because of temperature variation which is supposed to be not
perfectly corrected). The current is supposed to be a DC current which amplitude is linearly
dependant of the PWM rate.

4.3.2 Magnets

Because we have some trouble to correctly control the satellite, other possible controls methods
than MT alone have been investigated; this section will presents some results of the researches done
about the possibility to use permanents magnets.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 54 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

A permanent magnet produce the same effect as a MT always switched on, so the satellite
(and the magnet) will be aligned with the Earth’s magnetic field lines(see Figure 4-13) and will spin
around the magnet axis.

Figure 4-13 : Passive attitude control using a permanent magnet [R13]

Precautions must be taken when choosing the position of the magnet in the satellite, because we
must ensure the payload will be able to take goods pictures and the antennas must be in the right
direction to guarantee a sufficient gain to communicate with the ground station. A magnet parallel
to the satellite Z axis (see Figure 3-2) seems to be the best solution.

The main advantages of this method are:

 No power consumption; a MT could even be suppressed to decrease the overall mass and
power consumption.

 The satellite is always passively controlled when the ADCS is switched off, for example to
reduce the power consumption when it is in the eclipse period of the orbit or to recharge the
batteries when the satellite is in safe mode.

 The torque produced by a magnet can be greater than the one of the MT (and for a lower
mass), so this could help to reject the perturbations.

The main drawbacks are:

 The MM could saturate because of the high magnetic field produced by the magnet. But as
we will see in section 5.2.2, this will not be a problem in our case. An offset will simply be
added to the MM measurements; this will slightly increase the MM compensation software
complexity. This offset must be measured very precisely in order to guarantee the MM
precision.

 The satellite will spin around the magnet axis; this rotation might be hard to control. It must
not be too high in order to not degrade the payload performances.

Because a permanent magnet does not dissipate energy, the satellite will also oscillate around the
Earth’s magnetic field lines. This phenomenon can be controlled or minimized using passive
hysteresis materials (HyMu80) or the MT (see [R13] and [R14]). The main trouble here is the MT
torque will be very small/null because they are almost perpendicular to the Earth’s magnetic field if
the oscillation amplitude is small. But an advantage of the MT is that because they are actively
controlled, they provide a faster detumbling.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 55 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Regarding the design of the magnet, some points must also be taken into account: it must survive
the space conditions (temperature, demagnetization,…), it must satisfy the launcher requirements
(especially it must not interfere with the P-POD and others CubeSats) and the oscillation motion
must not excite the structure modes of the satellite.

The equivalent dipole magnetic moment of a magnet can be computed using this equation [R13]:

𝜇 =
𝐵𝑖𝑉

𝜇0
 [𝐴𝑚2] (3.8)

With Bi = Intrinsic induction of magnetic material (same as remanence for fully magnetized

materials) [T], V = magnet volume [m3] and μ0 = vacuum permeability = 4π⋅10-7 [Tm/A].

The magnetic material can be for example Neodymium N35 (Bi≈1.2T) or AlNiCo-5 (Bi=1.28T). A

simple cylindrical magnet in AlNiCo-5 with ∅6x5mm dimensions will produce a dipole

magnetic moment of 576⋅10-3Am2 which is about 20 times the one of the MT; its weight is
only 4g!

See [R3] for more information about the Earth’s magnetic field, [R13] and [R14] about the passive
magnetic stabilization. The free CUBESIM software can be used to design the magnets and
compute the oscillation of the satellite.

4.4 Power budget

The ADCS power budget has been corrected and completed according to the new electrical
schematic and components.

The ADCS microcontroller is assumed to be in sleep mode (LPM0) when it is not used.

All sensors are assumed to be switched off when no measure is needed. The LDO regulators are not
directly taken into account because they simply dissipate overpower and all sensors have the same
power consumption with a 3.0V power supply than with a 3.3V. So the power supply can be
considered to be 3.3V for all components.

The MT are assumed to be always switched on with their maximum power consumption.

This budget shows the maximum peak currents in order to choose the wires and LDO, and check if
the EPS can supply this current. The datasheet typical and maximal values are used for each
component in order to have more details.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 56 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

ON OFF ON OFF

Microcontroller :

MSP430F1611

@7MHz and LPM0 1 3.3 3563 588 4263 693 5 100 0.5 4.26 2.48 14.07 6.85 8.18

Sensors :

 - Magnetometer

AK8970N 1 3.3 8500 0.1 13000 5 140 1 0.14 13 1.8243 42.9 3.92728 6.02019

NC7SZ66 1 3.3 0.05 0.05 10 10 140 1 0.14 0.01 0.01 0.033 0.00017 0.033

 - Sun Sensors

DTU Sun Sensor 6 0 0 0 0 0 1 1 0.001 0 0 0 0 0

AD8552 12 3.3 1900 0 2150 0 1 1 0.001 25.8 0.0258 85.14 0.07524 0.08514

ADG708 4 3.3 0.0001 0 1 0 1000 1 1 0.004 0.004 0.0132 1.3E-06 0.0132

 - Gyroscopes

IDG1000 2 3.3 8500 0 10500 0 600 1 0.6 21 12.6 69.3 33.66 41.58

 - Temperature

LM94022 2 3.3 5.4 0 9 0 20 1 0.02 0.018 0.00036 0.0594 0.00071 0.00119

Total sensors : 59.8 14.5 197.4 37.7 47.7

Actuators :

 - Magnetotorquers

Coil 3 3.3 15000 0 15000 0 1000 1 1 45 45 148.5 148.5 148.5

H-Bridge 2 3.3 600 0.1 600 0.1 1000 1 1 1.2 1.2 3.96 3.96 3.96

46.2 46.2 152.5 152.5 152.5

110 63 364 197 208

Typ Current

[µA]

Max Current

[µA]Part/function Number
Voltage

[V]

ON

Time

[ms]

Total :

Total actuators :

ON

frequency

[Hz]

Duty

cycle

Max

Peak

Power

[mW]

Mean

Max

Power

[mW]

Mean

Max

Current

[mA]

Mean

Typ

Power

[mW]

Max

Peak

Current

[mA]

Table 4-3 : ADCS power budget

We can observe the power consumption comply with all ADCS requirements.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 57 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

5 TESTS

5.1 ADCS main board

5.1.1 DCO frequency

As we have seen in section 4.1.2, an external resistor must be used to provide current to the DCO of
the microcontroller to reduce the frequency drift due to the temperature. Because there is no
information in the datasheets (and others TI documents) about the influence of the DCO and RSEL
registers values when the external resistor is used (DCOR=1), that must be measured to select the
operating frequency.

These measures have simply been done using an oscilloscope connected to the SMCLK output pin
(pin 49). This output is enabled by the software when an MM measure is started. To ensure a correct
precision, the period has been measured on several clock edges (to compute a mean period). These
measures have been done with 2 different microcontrollers. The results are shown in Table 5-1.

1) MSP430F169 of the old ADCS board (built by Bastien Despont)

0 1 2 3 4 5 6 7

0 2.99E+05

1

2

3

4 1.89E+06

5 3.17E+06

6 4.52E+06 4.95E+06 5.52E+06 6.20E+06 6.99E+06

7

2) MSP430F169 of the actual ADCS test board :

0 1 2 3 4 5 6 7

0 2.99E+05

1

2

3

4

5 2.50E+06 3.30E+06 3.97E+00 4.49E+06 5.08E+06

6 4.23E+06 4.65E+06 5.06E+06 5.81E+06 6.50E+06 7.38E+06

7

DCO

DCO

RSEL

RSEL

Table 5-1 : DCO oscillator frequency [Hz] versus some DCO and RSEL register values. The external resistor
Rosc=100kΩ (0.1%, 25ppm/°C, 0805) is used (DCOR =1), the temperature is about 20-25°C and Vcc=3.3V.

We see there is a quite big variation of the DCO frequency between the 2 microcontrollers (<15%
according to the datasheet).

Because the maximum MCLK/CPU frequency is 7.35MHz with a 3.3V power supply, the
temperature drift -0.1%/°C (according to the datasheet) and the minimum temperature -30°C, we
see the maximum parameters are DCO=RSEL=6. To ensure a small margin I would
recommend using DCO=5 and RSEL=6 if the frequency is not measured. If the CPU speed
is not important for the subsystem, a lower frequency can be used to reduce the power
consumption.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 58 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

To compensate correctly the DCO temperature drift for the time clock drift and check if this
variation is acceptable for MM (can’t be compensated here!), the DCO frequency should also be
measured versus temperature.

5.2 Magnetometer

5.2.1 Measurement time

The MM measurement time was not measured in the previous project (see [R2]). Because the used
MCLK frequency will not be in the MM nominal range (11MHz to 26MHz), the measurement time
should be measured to ensure it is not too high for our purpose; indeed if this value is about 0.5-1s,
this could be a problem because it reduce the dynamic (by providing an average value for this
period) and limits the measurement rate.

This value has simply been measured by looking how long the MCLK (MSP pin 49) is active with an
oscilloscope; it is started by the software when an MM measure is started and stopped when the MM
generates an interrupt to say the measure is complete. The MM can be configured with an integrator
operating time of “10ms” or “20ms”. The second value will be preferred because it reduces the
sensor noise. I have been able to make work the MM with a 2.5MHz MCLK, although [R2] indicates
it does not work below 3MHz. So we see the datasheet takes a very big margin (fmin nominal=11MHz).

Int. Time 20ms Int. Time 10ms

2.5 330

3.3 256

3.97 208

4.23 200 86

4.49 190 77

4.65 180 70

5.06 162 60

5.8 146

6.5 131

7.38 117

Measurement time [ms]
MCKL [MHz]

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8

M
e

as
u

re
m

e
n

t
ti

m
e

 [
m

s]

MCLK [MHz]

Int. Time 20ms

Int. Time 10ms

Figure 5-1 : MM measurement time versus MCLK clock frequency

As we can see in Figure 5-1, the measurement time is 130ms with a 6.5MHz MCLK and a
“20ms” integrator time (at ≈20°C). This is completely acceptable, because the satellite spinning rate
will be <1°/s; it will rotate about 0.13° during an MM measure which is below the expected MM
precision. We also observe the measurement time variation is not linear for low MCLK frequency
and becomes to be rather high.

5.2.2 Offset configuration

The offset of the MM output can be configured with a specific 8-bit register for each axis (be
careful: the command is quite strange, see Figure 5-2), but the datasheet does not indicate clearly the
offset variation as a function of the value put in these registers. No measure was done about that
during the previous project.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 59 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 5-2 : MM offset setting command versus offset

This characteristic is important because if a permanent magnet is put in the satellite, it will generate a
high magnetic field which could saturate the MM. Another important point is the MM offset
variation due to the temperature must be compensated in real-time in the MM itself by adjusting the
offset register to guarantee the measurement range. If the output change is too small (1bit/offsetbit),
we will not be able to correct the offset drift because all values are 8-bit values, and if it is too big, it
will decrease the MM resolution (see equation (4.1)).

To do these measures, the ADCS board with the MM has simply been kept in the same position and
in the same environment; the constant ambient field is measured with the MM. The offset
configuration value is changed and the MM output mean value is written. This procedure does not
allow finding the 0 offset (output value for a 0T magnetic field). Figure 5-3 shows the measurements
results:

y = 25.19x + 49.68
R² = 1

y = 25.31x + 56.09
R² = 1

y = 24.96x - 0.923
R² = 1

-50

0

50

100

150

200

250

300

-4 -2 0 2 4 6 8 10 12

O
u

tp
u

t
b

it

Offset bit value (normalized)

Gain 23dB

X

Y

Z

Linear (X)

Linear (Y)

Linear (Z)

Figure 5-3 : MM output value versus offset setting value. Vcc=3.3V, MCLK=5MHz, gain=23dB,
integrator_time=20ms and T≈20°C.

The output offset variation is Offsetsensitivity≈25.1bit/offsetbit for each sensor axis. This value
does not change when the MM gain is modified, which is perfectly logical regarding to the sensor
architecture (see Figure 4-5). It does not change either when the MCLK frequency is modified; it
means that the MCLK mainly influence the MM Chopper SW and influence feebly the MM ADC
and SH electronic.

The variation of the offset setting sensitivity versus temperature has not been measured.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 60 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

5.2.3 Sensitivity and gain

Thanks to the previous measurement, the maximum MM sensitivity can be computed:

𝑠 =
2𝐵𝑚𝑎𝑥

 28 − 1 − 𝑂𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 −𝑀𝑎𝑟𝑔𝑖𝑛
=

2 ⋅ 60𝜇𝑇

255 − 25 − 5
= 0.533

𝜇𝑇

𝑏𝑖𝑡
 (4.1)

𝑜𝑟
1

𝑠
= 1.875

𝑏𝑖𝑡

𝜇𝑇
 (4.2)

According to Figure 14 on page 16 in [R2], the MM sensitivity is maximal between 20°C and 50°C.
Therefore we can try to obtain the sensitivity computed above at ambient temperature changing the
MM gain setting.

To do that, the ambient magnetic field has been measured for different orientation with the MM and
using a Gauss-meter as reference; the MiliGauss, lent by Pavel Kejik from the LMIS3. It can measure
a magnetic field with a resolution of 1mGauss=100nT (it is the probe with the highest resolution I
could found). It is quite difficult to put the MiliGauss probe exactly in the same position and
orientation of the MM, so some errors are committed.

The results are summarized in table Table 5-2:

Reg. setting dB

0x0e 22.4 1.739 77.4

0x0f 22.7 1.851 75.9

0x10 23 1.909 78.2

Y 0x0f 22.7 1.757 39

0x0f 22.7 1.683 40.6

0x10 23 1.722 38.8

Gain
Axis

Sensitivity

[bit/uT]

Zero

offset [bit]

Z

X

Table 5-2 : Summary of the gain settings measures. Vcc=3.3V, MCLK=6.5MHz, integrator_time=20ms and
T≈20°C.

The maximum measured magnetic field was around 25μT, which is quite small and so introduces a
higher unknown on the sensitivity. Unfortunately, only a few gains could be tested because of time
constrains.

We can see the gain setting must be tuned to obtain the right sensitivity for each axis. The gain
setting could also be used to compensate in real-time the sensitivity drift caused by temperature
variation. The zero offset values are quite strange compared to these obtained in [R2], because they
are not near 256/2=128. Maybe there was an error with the offset setting during these
measurements.

Thus further measurements must be done.

5.2.4 Vacuum

During the previous project, a simple vacuum test was done and concludes that the offset changes
under vacuum conditions. This result has to be verified because these tests may have not been done
in proper conditions.

Determine and characterize the MM offset change in vacuum conditions is very important, because
it will work in vacuum on the satellite.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 61 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

To do this test, the complete board has simply been put in a vacuum chamber. The MM measures
the ambient magnetic field, so the environment must not change during the measurements. Because
it was not possible to connect the board to the debugger (there was not enough wires), all
measurements have been stored in the microcontroller Flash memory and revered later with the
debugger. The detailed procedure description can be found in Appendix C.1.

The main test result is shown in Figure 5-4:

Figure 5-4 : Measures under vacuum conditions

We can observe there is no significant offset variation due to the vacuum conditions. The
temperature slightly diminish in vacuum (the sensor sensitivity is negative) and this is perfectly logic.
But keep in mind the minimum pressure was only ≈1mbar during this experiment.

Another interesting result of this experiment is that the ADCS time clock error is around 30s for
a ≈20mn working time. So this error is clearly acceptable; but keep in mind the temperature was
constant during this experiment.

5.2.5 Integration test with EPS

A very basic integration test has been done with the ADCS and the EPS boards; the ADCS board
has been supplied with the EPS board and a battery.

The EPS board uses inductances, voltage converters and can generate high currents (≤1A), thus it
could probably generate magnetic disturbances.

The ADCS and EPS board have been placed close to each other (≈1-2cm) and an offset change of
about 2 bits has been observed on the MM (with sensitivity≈1.85bit/μT) when the EPS supplied a

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 62 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

high current; this is quite small so we can deduce there will not have any trouble with the MM and
EPS because they are separated by more than 3cm.

5.3 Sun sensors

A very simple test has been done with the sun sensors and the ADCS board; the goal was to
demonstrate the SS signals can be measured using the ADCS board. The sun sensor PCB
(AHW3_4, see electrical schematic in Appendix A.2) has been connected to the ADCS board which
was supplied with a 3.3V power supply. A flashlight has simply been used to change the luminosity
on the SS.

The result is that the variation of the ambient luminosity can be seen with the microcontroller; the
measured voltage increase if the luminosity increase; especially for the reference signals. It is hard to
say something about the relationship between the direction of the light, the 2 SS output signals and
the 2 SS output references with this experiment. The noise seems to have a standard deviation in the
range of 0.7 to 1mV for the output signals and around 0.3mV for the output references. This is
small; actually it is in the range of the ADC resolution (0.6mV).

5.4 Magnetotorquers

5.4.1 Impedance measurement

The magnetotorquer impedance characteristic has been measured with an Impedance Analyser
(Agilent 4294A) at ambient temperature (20°C). These measurements give us the magnetotorquer
equivalent electrical circuit, thus we can know the frequency response and determine an adapted
PWM frequency.

The impedance has been measured for a frequency between 1kHz and 50kHz (see Figure 5-5).

Figure 5-5 : Magnetotorquer impedance (norm and angle) at 20°C versus frequency

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 63 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

As we could expect, the equivalent circuit is mainly composed of a series resistor with an inductance
(see Figure 5-6). A small capacitor is also present (due to the wire coating and space between the
wires), but it can be neglected.

Figure 5-6 : MT equivalent circuit

Figure 5-7 : Theoretical impedance
(norm and angle) versus frequency

of the equivalent circuit

R1 = R0 109.2Ω

L1 = L 29.4mH

C1 74.1pF

Table 5-3 : MT measured
characteristics

5.4.2 PWM rates and filters

The magnetotorquer transfer function can be calculated thanks to the parameters given in Table 5-3
(C1 is neglected). The nomenclature is referred to Figure 4-11 here.

The more interesting transfer function is the one for the current (see Figure 5-8), because there is a
direct relationship with the produced torque. The coil itself is an order 1 low-pass filter with a cut-
off frequency fcoil = 590Hz. When CMT is added, the current filter becomes an order 2 low-pass
filter. Thus a good value is CMT=6.8μF, because the two cut-off frequency have the same value. A
greater value can also be used (if it is greater, the cut-off frequency will be lower). The Matlab
script “calc_transfert_function.m” has been created to compute these parameters.

Figure 5-8 : MT current and voltage transfer functions (
𝑼𝒄𝒐𝒊𝒍

𝑼𝒃𝒓𝒊𝒅𝒈𝒆
 and

𝑰𝒄𝒐𝒊𝒍

𝑼𝒃𝒓𝒊𝒅𝒈𝒆
), top without CMT, bottom with

CMT=6.8μF

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 64 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Therefore the PWM frequency should be at least 5 or 10 times greater than fcoil to ensure small
current variations : fPWM> ~5kHz.

The following tests have been done with the Si9987 H-Bridges. Although its datasheet indicates a
minimum voltage of 3.8V, they work with the 3.3V power supply (up to 2V at 20°C!). It is probably
because the currents are small. Their operation has not been tested for other temperature.

Figure 5-9 shows current and voltage in the coil (and the wires from ADCS board to MT) for
different parameters (do not forget to use differential probes). Although the value used for CMT was
100nF, the results should be similar with a higher value (see Appendix B.4 for the transfert
functions).

(a) simple PWM, f=5kHz, CMT=100nF

(b) simple PWM, f=32kHz, CMT=100nF

(c) simple PWM, f=5kHz, no capacitor

(d) simple PWM, f=32kHz, no capacitor

(e) double PWM, f=5kHz, no capacitor

(f) double PWM, f=32kHz, no capacitor

Figure 5-9 : MT voltage ucoil and current icoil versus frequency, CMT and PWM type

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 65 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

We can observe the current and voltage are smoother if CMT is present (subfigure (a) and (b)) which
is perfectly logical. In this case, the current is almost constant for a 32kHz frequency. We also see
that there is no small spike due to the commutation of the transistors in the H-bridge. These signals
are exactly the ones which stand in the long wires between the ADCS board and the MT.

Therefore adding CMT could help to reduce the noise induced in other lines close to the MT
lines, although it is not useful for the MT themselves. Somes further tests should be done to
determine if it is better to use a high or a low frequency (~5kHz or ~32kHz). Using a higher
frequency than 32kHz should probably not be a good idea, because the MT current will remain
constant, but it could generate more noise due to the voltage quick variation.

Although double PWM are often used to control motors, in our case it is also not a good idea to use
it because it double the current and voltage variation and so the induced noise in close lines.

5.4.3 Outgassing

Outgassing tests must be done for the MT to ensure they satisfy the contaminations requirements,
because the winding wires are not space-qualified. It is also useful to observe the MT mechanical
resistance to vacuum conditions, because there is still air between the wires and some bubbles due to
the high viscosity of the resin used (EPO-TEK 920).

The outgassing detailed procedure has been prepared by Marie Dumont and can be found in
Appendix C.2; the tested MT must stay for at least 24h with controlled temperature and humidity
(22±3°C, 55%RH±10%), then it is weighted with a high-precision balance, put in a vacuum
chamber for at least 24h (at least 10e-4 Pa, ± 10 %, 125±3°C) and finally weighted a second times.

Unfortunately this test could not have been done during the project, because of a malfunction in the
RUAG Nyon vacuum chamber facilities. It will be done as soon as the problem is solved.

One MT has been weighted after having stayed for 24h in a controlled environment: m=27.7544g.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 66 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

6 RECOMMENDATIONS

A lot of tests remain to be done with all sensors. Regarding the MM, a precise and complete
temperature characterisation must be done with the ADCS board in order to know:

 The zero offset drift,

 The sensitivity variation,

 The offset setting sensitivity drift (if there is one).

 The noise level must be checked for each axis (see [R2]).

 The internal temperature sensor must be characterized.

 The DCO frequency should also be measured in order to check its variation to correct the
time clock.

These tests can be done in the RUAG Nyon vacuum chamber facilities; they gave us authorization
to put the ADCS test board in the vacuum chamber (because of contamination problems). These
facilities use a cryogenic liquid and a heater to control the temperature using mainly thermal
conduction, so they should not generate magnetic perturbations (an electrical resistor or IR heater
cannot be used with the MM!). According to the current measures and MM parameters, the
precision requirements will be hard to satisfy.

Then the temperature compensation should be implemented in the MM software and validated. One
very big problem is that almost each sensor has different characteristics, so all sensors of the final
satellite must be characterized in offset and sensitivity. The DCO frequency of each MSP
should also be measured if it is necessary.

Concerning the MT, outgassing and mechanical resistance tests must be done to check if the present
design complies with all requirements and resists to the launcher vibrations, vacuum… or not;

 If it is the case, thermal conduction characteristics should be checked in order to know if it
is possible to measure only the temperature of satellite faces to control the MT current in
order to satisfy the torque precision requirements (which are currently not defined).

 In the contrary case, another less viscous resin could be used or other MT design solutions
could be investigated; for example they could be built using PCB stack. The MT current
measure circuit and regulator should also be designed and implemented.

Measurements with the MT H-bridge should be done to check if these components still work at low
temperatures (-30°C). Do not forget that the maximum torque is currently only limited by the MT
power consumption, so it can potentially be increased (up to 1.8x with 3.0V). Different PWM
frequencies should be tested in the Integration Model in order to limit the noise induced on the
analog signals lines (SS, GYR, …). The MT produced magnetic should also be characterized.

In the matter of the SS, do not forget to use precision resistors for the amplifiers to lower the
temperature dependency. All wires from the Connection Board could be enlaced to reduce the
noise.

The new version of the ADCS board should be finalized. Some investigations remain to be done
about the ADC reference voltage, the low-pass filters for the analog signals, the latch-up protections
and the MT current measurement. Do not forget to put a measurement pad to measure in safety
the microcontroller MCLK frequency (pin 49). Keep also the useful debug LED.

The ADCS software must be completed; be careful with the starting times in order to reduce power
consumption. Do not forget the MT should not be on when MM is measuring.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 67 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

7 CONCLUSION

During this project, almost all functionalities of the ADCS board were integrated and tested
(magnetometers, magnetotorquers, sun sensors, gyroscopes and temperature sensors, but not I2C);
the first version of the ADCS microcontroller software has been written and a second iteration has
been done about the ADCS hardware. Recommendations were proposed for a third revision about
the hardware. Although there is still a lot of work and tests to carry out, especially about temperature
tests and compensation software, the present ADCS systems is able to provide basic sensors
readings and actuators control.

But we still do not know if the whole ADCS system and hardware will comply with the
determination and control precision requirements. Many efforts must be put in this direction at the
beginning of the next projects.

An efficient calibration methods remains to be found for the gyroscopes. A detailed and complete
model of the sun sensors (taking into account the 6 sensors) must be created; for that a model
providing the direction of the sun as a function of the date, satellite orbit and position, therefore
linked to the propagator, should probably be built.

According to the last news from the Automatic control Laboratory, the presence of a permanent
magnet will not help to control the satellite, but on the contrary it will reduce its controllability; the
magnetotorquers will always stay nearly perpendicular to the Earth’s magnetic field lines and will
have few effects. Therefore we do not have an efficient method to control the SwissCube for the
moment. This is a major issue for the ADCS.

Lausanne, 23/06/2007

Hervé Péter-Contesse

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 68 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

8 ACKNOWLEDGMENTS

I would like to thank Peter Bruelmeier and André Badertscher for their great help about the PCB
layout, components soldering and PCB error corrections.

I give thanks to Roland Dupuis for having winded and molded the magnetotorquers. I would never
have been able to build them without him.

Many thanks to Paolo Germano and to the LAI team for having provided to me a working place in
their lab, all intruments I needed and some advices, although the fact I was not working for the LAI.

Thanks to the SwissCube team for the nice working atmosphere and their help.

9 CONTACTS

Peter Bruelmeier peter.bruehlmeier@epfl.ch ACORT - PCB layout

André Badertscher andre.badertscher@epfl.ch ACORT - SMD component soldering

Roland Dupuis roland.dupuis@epfl.ch AEM - Electromechanical workshop, MT

Jean-Paul Brugger jean-paul.brugger@epfl.ch AEM - Electromechanical workshop (chief)

Beatrice Iten b.iten@polyscience.ch Polyscience AG - EPO-TEK supplier

Robert Owen rcwo@ti.com TI - University Programme Manager /

 Supplier for the 40x MSP430F1611

Paolo Germano paolo.germano@epfl.ch LAI - Magnetic circuits

Pavel Kejik pavel.kejik@epfl.ch LMIS3 - Magnetometers

mailto:peter.bruehlmeier@epfl.ch
mailto:andre.badertscher@epfl.ch
mailto:roland.dupuis@epfl.ch
mailto:jean-paul.brugger@epfl.ch
mailto:b.iten@polyscience.ch
mailto:rcwo@ti.com
mailto:paolo.germano@epfl.ch
mailto:pavel.kejik@epfl.ch

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 69 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

10 REFERENCES

[R1] Bastien Despont, S3-B-ADCS-1-4-AHWreport, EPFL, February 2007

[R2] Vasko Vitanov, S3-B-ADCS-1-3-Magnetic_sensor, EPFL, February 2007

[R3] Hervé Péter-Contesse, S3-C-ADCS-1-2-Earth's Magnetic Field Model, EPFL, May 2007

[R4] Kaspar Jenni, S3_Phase_B-C-ADCS-1-3-Gyroscopes, EPFL, May 2007

[R5] Andres Schmocker, S3_Phase_B-C-ADCS-Sun sensors, EPFL, May 2007

[R6] Daniel Hakansson, S3_Phase_B-C_Mission_design, EPFL, May 2007

[R7] Jordi Martin-Benet, S3_Phase_B-C-ADCS-SwissCube Attitude Determination Algorithm Design
and Validation, EPFL, May 2007

[R8] M. Noca, SwissCube Project Specifications, EPFL, January 2006

[R9] Dumont Marie, S3_B_SE_1_1_specrules, EPFL, February 2007

[R10] R. Krpoun, M. Noca, N. Scheidegger, S3-B-SET-1-2-Mission_System_Overview, EPFL,
February 2007

[R11] Oscar de la Torre, S3-B-TCS-1-1-Thermal_Management, EPFL, February 2007

[R12] Torben Graversen, Michael Kvist Frederiksen, Søren Vejlgaard Vedstesen, Attitude Control
system for AAU CubeSat, Aalborg University, June 2002

[R13] Lars Alminde, Semi-Active Attitude Control and Off-line Attitude Determination for SSETI-Express,
Aalborg University, June 2004

[R14] Jean-Francois Levesque, Passive Magnetic Attitude Stabilization using Hysteresis Materials,
SIgMA, Sherbrooke University

[R15] Guillaume Roethlisberger, S3-B-STRU-1-4-StructureConfiguration, EPFL, February 2007

[R16] Texas Instruments, MSP430x1xx Family User's Guide (slau049f), TI, 2006

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 70 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

11 ABBREVIATED TERMS

ADC Analog to Digital Converter

ADCS Attitude Determination and Control System

CB Connection Board

CDMS Command Data Management System

DCO Digitally Controlled Oscillator

EMF Earth’s Magnetic Field

EPS Electrical Power System

GYR Gyroscope

ICD Interface Control Document

LDO Low Dropout linear voltage regulator

LUT Look-up Table

MM Magnetometer

MSP Mixed Signal Processor

MT Magnetotorquer

PWM Pulse Width Modulation

RMS Root Mean Square

SS Sun Sensors

STK Satellite Tool Kit

SV Secular Variation of the Earth’s magnetic field

TC Telecommand

TL Telemetry

TLE Two Line Element from NORAD

Appendix A ADCS board electrical schematic and PCB

A.1 AHW1_4

A.1.1 Electrical schematic

Remaining errors:

 A 10μF capacitor should be placed between MSP430 pin7 and GND to ensure ADC correct
operation.

 The MCLK signal for the magnetometer must use the SMCLK signal from the MSP430 (pin
49), because the MCLK from pin48 is stopped when the microcontroller is in sleep mode.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 71 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 72 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

A.1.2 PCB

Component placement:

The file containing the complete layout is available on the CD-ROM (ahw1_c_5.pdf).

A.2 Sun sensors electrical schematic

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 73 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

A.3 ADCS PCB usable area for the next board

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 74 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Appendix B Magnetotorquers drawings

B.1 Outer dimensions

B.2 Winding parts

Figure 11-1: Coil winding flange

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 75 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Figure 11-2 : Coil winding heart

B.3 Mould parts

Figure 11-3 : Two mould parts. The last part is a simple plate with the holes for the pins.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 76 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

B.4 Transfer function

Figure 11-4 : MT voltage and transfer function for CMT = 100nF

Appendix C Test procedures

C.1 Magnetometer Vacuum test

Additional information and measurement results can be found in the file
“Results_vacuum_test_22mai07.doc”

C.1.1 Hardware

The magnetometer is tested using the ADCS main board (which is still a test board), so the whole
board is put in a vacuum chamber. The board is powered using a stabilized power supply at 3.3V.
The power supply wires are the only wires which go into the chamber, so all measurements are
stored into the internal flash memory of the microcontroller.

The vacuum chamber is the one of Samuel at the CSEM in Neuchâtel. A barometer which can

measure between 1bar and 1mbar has been used. The vacuum pump seems to go up to ∼1e-5mbar
but this pressure has never been reached, because it could not be measured.

A watch with a chronometer has been used to measure the time.

C.1.2 Procedure

1. Clean the chamber and put an appropriate gel on the seal

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 77 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

2. Put the ADCS board in the chamber with the power supply and the programmer/debugger

connected

3. Put the top on the chamber without screwing it down

4. Adjust the MM gain to a desired value and program the microcontroller

5. Start the program (measures) and adjust the MM offset to obtain an output value around 128

for each axis.

6. Re-program the microcontroller (the program can only be launched once!)

7. Start the program, the chronometer and disconnect the debugger

8. Close the chamber by screwing the top and wait a moment (∼1mn) reference values at

ambient pressure

9. Switch on the vacuum pump

10. Stop the pump when the pressure is under 1mbar

11. Open the valve slowly to increase the pressure, then wait ∼1mn

12. Repeat 11 until ambient pressure is reached

13. Wait ∼ 1mn

14. Unscrew the top

15. Stop the measurements using the reset push button of the board

16. Connect the debugger without programming the memory and recover the measurements

using the memory view (column space 1 or 2 and unsigned integer rendering). Paste the

memory view containing the data in a text file.

17. Begin at 2 if another measure must be done

All actions since 7 have been recorded with the time and the pressure. The environment
around the vacuum chamber should not change during the experiment, because we
measure the ambient magnetic field!

The temperature was about 25°C, even thought it has not been measured (except by the internal
temperature sensor of MM).

C.2 Magnetotorquer outgassing

The magnetotorquer outgassing procedure has been created by Marie Dumont.
See S3-C-1-0-Outgassing_magnetotorquers.

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 78 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

Appendix D Interface Control Documents

D.1 Electrical

PIN NAME TYPE I/O
Voltage

[V]

Mean max

Current

[mA]

Peak max

current

[mA]

To (in

case of

output)

From (in

case of

input)

Purpose / Description

1 MT-X(+) Power O 0 - 3 15 MT -X

2 MT-X(-) Power O 0 - 3 15 MT -X

3 MT+Y(+) Power O 0 - 3 15 MT +Y

4 MT+Y(-) Power O 0 - 3 15 MT +Y

5 MT-Z(+) Power O 0 - 3 15 MT -Z

6 MT-Z(-) Power O 0 - 3 15 MT -Z

7 GND_GYR Power O 0 6.3 10.5 GYR +Y

8 V_GYR Power O 3 12.6 21 GYR +Y

9 GND_GYR Power O 0 6.3 10.5 GYR +Y

10 GYR+Y Analog I 0-2.5 GYR +Y/CB CB GYR analog signal

11 CB_TEMP Analog I 0-2.5 CB
Connection Board

temperature sensor

12 GND_SS Power O 0 0.0129 12.9 SS

13 V_SS Power O 3 0.0258 25.8 SS

14 GND_SS Power O 0 0.0129 12.9 SS

15 SS-X_s1 Analog I 0-2.5 SS -X

16 SS-X_r1 Analog I 0-2.5 SS -X

17 SS-X_s2 Analog I 0-2.5 SS -X

18 SS-X_r2 Analog I 0-2.5 SS -X

19 SS+X_s1 Analog I 0-2.5 SS +X

20 SS+X_r1 Analog I 0-2.5 SS +X

21 SS+X_s2 Analog I 0-2.5 SS +X

22 SS+X_r2 Analog I 0-2.5 SS +X

23 SS-Y_s1 Analog I 0-2.5 SS -Y

24 SS-Y_r1 Analog I 0-2.5 SS -Y

25 SS-Y_s2 Analog I 0-2.5 SS -Y

26 SS-Y_r2 Analog I 0-2.5 SS -Y

27 SS+Y_s1 Analog I 0-2.5 SS +Y

28 SS+Y_r1 Analog I 0-2.5 SS +Y

29 SS+Y_s2 Analog I 0-2.5 SS +Y

30 SS+Y_r2 Analog I 0-2.5 SS +Y

31 SS-Z_s1 Analog I 0-2.5 SS -Z

32 SS-Z_r1 Analog I 0-2.5 SS -Z

33 SS-Z_s2 Analog I 0-2.5 SS -Z

34 SS-Z_r2 Analog I 0-2.5 SS -Z

35 SS+Z_s1 Analog I 0-2.5 SS +Z

36 SS+Z_r1 Analog I 0-2.5 SS +Z

37 SS+Z_s2 Analog I 0-2.5 SS +Z

38 SS+Z_r2 Analog I 0-2.5 SS +Z

39 NC Unused Reserve

40 NC Unused Reserve

1 Vcc Power I 3.3 32 55 EPS

2 Vcc Power I 3.3 32 55 EPS

3 GND Power I 0 32 55 EPS

4 GND Power I 0 32 55 EPS

5 I2C_data Digital IO 0 - 3.3 Main bus

6 I2C_clock Digital IO 0 - 3.3 Main bus

Jmec 1 GND_FRA Thermal I Mec
Frame ground for thermal

dissipation

J6

J5

PIN #

Magnetotorquers PWM

signals and power

Stabilized power supply

for Connection Board GYR

and temperature sensor

Stabilized power supply

for all sun sensors

Sun sensors analog

outputs: 2 signals and 2

references per sun sensor

ADCS Board, sensors and

acutators power supply

Main communication Bus

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 79 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

D.2 Data

Data direction Description Data type
Data length

[bits]
Units

Nominal

range

Max values

(due to data

type)

Magnetometer X,Y and Z 3x int16 + 1x Uint32 (TS) 80 1e-7 Tesla ± 60.0mT ± 3276.7mT

Sun Sensors -X,+X,-Y,+Y,-

Z and +Z
12x int16 + 1x Uint32 (TS) 224 0.1 Degree ± 70.0° ± 3276.7°

Gyroscopes X,Y and Z 3x int16 + 1x Uint32 (TS) 80 1e-3°/s ± 30.000°/s ± 32.767°/s

ADCS Temperature 1x int8 8 °C -30 to + 60°C ± 127°C

Connection Board

temperature
1x int8 8 °C -30 to + 60°C ± 127°C

CDMS --> ADCS
Magnetotorquers

Torque/rate X,Y and Z
3x int8 24

% from

max value
 ± 100% ± 127%

EPS --> ADCS
Panels Temperature -

X,+Y and -Z
1x int8 8 °C -45 to + 70°C ± 127°C

ADCS --> CDMS

TS = Time Stamp, Uint16 = 16 bit unsigned interger

Appendix E Software

E.1 Perturbation calculation

The perturbations have been calculated using the Matlab script “disturbances.m” from Bastien
Despond.

E.2 Magnetotorquer design

The magnetotorquers have been designed using the completed Matlab script “heart.m” and
“dimensioning.m” (created by Bastien Despond). The dimensions results are in “Coil_Result.m”.

The scripts “calc_transfert_function.m”, “calc_impedance.m” and “calc_resistance_drift.m” have
been created to compute the electrical coil parameters.

E.3 ADCS SW

E.3.1 Microcontroller programming in C recommendations

This appendix explains the basics for programming microcontrollers in C code (for use on the 16bit-
MSP430 and 32bit-ARM7 microcontrollers).

 Microcontrollers have a small computation capability: divisions and multiplications takes
many CPU cycles, so their number should be minimized. Additions, subtractions, shift,…
takes few CPU cycles (1 or 2).

 To do a multiplication by 2x , type : a = b≪x

 To do a division by 2x , type : a = b≫x

 Never use floating point numbers (double or float)! The microcontrollers have no FPU
(floating point unit) and all floating point operations are emulated in software with the C

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 80 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

compiler. For example, a simple addition with 2 floats will take about 250 CPU cycle and
only 1 or 2 cycles with integer.

 Integers should be used! For the MSP430: if the number can be stored in a 16bit integer
(int or short int), don’t use a 32bit integer (long int)! For the ARM7, all computations can be
done with 32bit integer, except for tables, where you should minimize the memory size using
8bit (char) or 16bit integer if it’s possible.

 Always use look-up tables to compute a sinus, cosines or other complex functions!

E.3.2 Main file and General parameters

//**

/*

* File : main.c

* Created by Hervé Péter-Contesse

* April 2007

*

* SwissCube project - ADCS :

*

* Main program for testing all functionalities of the ADCS microcontroller and

* do measurements with all sensors in order to caracterize their operations

*/

//--

/*

 * Microcontroller Pin configuration :

 * - LED1 P2.4

 *

 * - Temperature sensor LM94022

 * E0 P1.4

 *

 * - Magnetotorquers

 * -- MT1-X

 * E4 P2.0

 * PWM1+ P4.1

 * PWM1- P4.2

 * -- MT2+Y

 * E5 P2.1 --> will be supressed !!!

 * PWM2+ P4.3

 * PWM2- P4.4

 * -- MT3-Z

 * E6 P2.2 --> will be supressed !!!

 * PWM3+ P4.5

 * PWM3- P4.6

 *

 * - Magnetometer AK8970N (USART1)

 * E2 P1.6

 * INT P2.3

 * RSTN P4.7

 * CS P5.0

 * SI P5.1

 * SO P5.2

 * SK P5.3

 * MCLK P5.5

 *

 * - Multiplexers

 * EN P1.0 : enable Multiplexers

 * A0 P1.1 : change gate

 * A1 P1.2

 * A2 P1.3

 *

 * - Sun sensors

 * E3 P1.7

 *

 * - gyroscopes

 * E1 P1.5

 *

 * - Analog Input

 * GYR+X P6.0/A0 !!!!!!!!!!!!!

 * GYR+Y P6.1/A1 !!!!!!!!!!!!!

 * GYR+Z P6.2/A2 !!!!!!!!!!!!!

 * SS#_s1 P6.3/A3 : sunsensors 1-6 signal 1

 * SS#_r1 P6.4/A4 : sunsensors 1-6 reference 1

 * SS#_s2 P6.5/A5

 * SS#_r2 P6.6/A6

 * Temp P6.3/A3 : ADCS board temperature

 * CB_temp P6.4/A3 : Connection board temperature

 * (I_MT-X P6.3/A3 : magnetotorquer current !!!!!!!!!!!)

 * (I_MT+Y P6.3/A4 !!!!!!!!!!!!)

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 81 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 * (I_MT-Z P6.3/A5 !!!!!!!!!!!!)

 *

 */

 //--

#include <msp430x16x.h>

#include "adcs_general_parameters_and_functions.h"

#include "adcs_magnetometer.h"

#include "adcs_magnetotorquers.h"

#include "adcs_sunsensors.h"

#include "adcs_gyroscopes.h"

#include "adcs_temperature.h"

#include "flash.h"

//--

// Global variables declaration

//--

TIME ADCSTime = 0; // time counter, incremented each T_TIMERA0

unsigned short int fmclk = FMCLK0; // actual MCLK clock frequency [kHz], to be adapted with temperature

char ADCSBoard_temp = TEMP0; //[°C] ADCS board temperature (external sensor)

char CB_temp = TEMP0; //[°C] Connection board temperature

unsigned char offset = 0x80; // must be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

unsigned char gain = 0x00; //0x00 = 18.2dB, 0x10 = 23dB, 0x1F = 27.5dB // must be removed

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

//unsigned char dco = 0x06; // must be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

char pwmX =0; // must be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

unsigned int i=0; // must be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!

//--

// Internal functions declaration

//--

void ADCSTime_correct_temp_drift(char temperature);

//--

// MAIN PROGRAM

//--

void main(void)

{

 //---

 // INITIALISATIONS

 //---

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 //---

 // Configure Clock system : max frequency 7.35MHz!!!

 // ~6.5MHz frequency with Rosc 100kohm 25ppm/°C

 DCOCTL=DCO1+DCO2; // DCO control register

 BCSCTL1=XT2OFF+RSEL1+RSEL2; // Basic clock system control register 1 : disable XT2

 BCSCTL2=DCOR; // Basic clock system control register 2 : use DCO for all and Rosc

 //---

 // Configure all Pins

 // - Sun sensors (SS) and Enable Power (E) pins (E0-E6 ; P1.4-P1.7 and P2.0-P2.2)

 P1SEL = 0x00; // all IO for SS and E

 P1OUT = 0x00; // all 0

 P1DIR = 0xFF; // all ouput for MUX and Enable pins E...

 P2SEL = 0x00; // all IO

 P2OUT = 0x00;

 P2DIR = 0xD7; // all output except P2.3(INT MM) and P2.5 (Rosc)

 // - I2C Pins

 //P3......................

 // - Magnetotorquers (and MM RSTN P4.7)

 P4SEL = 0x7E; // P4.0 and P4.7 IO, other peripherals !!!

 P4OUT = 0x00; // RSTN is not set for the moment (MM reset)

 P4DIR = 0xFF; // all output

 //P4DIR &= ~0x40; //P4.6 input for INT for old Bastien PCB1.2

!!

 // - Magnetometer (MM) pin

 P5SEL = 0x00; // all IO for the moment (if not, the MM is powered with SPI !)

 P5OUT = 0x00; // all L

 P5DIR = 0xFF; // all IO pin output

 // - Analog pins (Gyroscopes, Sun sensors and temperature sensor)

 P6SEL = 0xFF; // all peripheral : Analog input

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 82 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 //---

 // Configure Peripherals and init sensors

 //- Timer A for time stamp and clock

 TACCR0 = (T_TIMERA0*(unsigned long)fmclk)>>3; // Timer period : an interrupt each T_TIMERA0

 TACCTL0 = CCIE; // CCR0 interrupt

enabled

 TACTL = TASSEL_2 + MC_1 + ID_3; // SMCLK, up mode, divider 8 //

start timer

 //- ADC12 for Sun sensors, gyroscopes and temperature sensor (and MT current measure?)

 // -- Define conversion sequences

 ADC12MCTL0 = SREF_1+INCH_0; // ref+=Vref+, channel = A0, GYR+X ; gyroscopes

 ADC12MCTL1 = SREF_1+INCH_1; // ref+=Vref+, channel = A1, GYR+Y

 ADC12MCTL2 = SREF_1+INCH_2+EOS; // ref+=Vref+, channel = A2, GYR+Z

 ADC12MCTL3 = SREF_1+INCH_3; // ref+=Vref+, channel = A3, SS#_s1 ; sun sensors

 ADC12MCTL4 = SREF_1+INCH_4; // ref+=Vref+, channel = A4, SS#_r1

 ADC12MCTL5 = SREF_1+INCH_5; // ref+=Vref+, channel = A5, SS#_s2

 ADC12MCTL6 = SREF_1+INCH_6+EOS; // ref+=Vref+, channel = A6, SS#_r2

 //ADC12MCTL7

 ADC12MCTL8 = SREF_1+INCH_3; // ref+=Vref+, channel = A3, Temp ;

external_temperatures

 ADC12MCTL9 = SREF_1+INCH_4; // ref+=Vref+, channel = A4, CB_temp

 ADC12MCTL10 = SREF_1+INCH_10+EOS; // ref+=Vref+, channel = int_temp, internal_temperature

 //ADC12MCTL11 = SREF_1+INCH_3; // ref+=Vref+, channel = A3, I_MT-X ; magnetotorquer current

 //ADC12MCTL12 = SREF_1+INCH_4; // ref+=Vref+, channel = A4, I_MT+Y

 //ADC12MCTL13 = SREF_1+INCH_5+EOS; // ref+=Vref+, channel = A5, I_MT-Z

 // -- Switch on ADC and internal reference

 ADC12CTL0 = ADC12ON+REFON+REF2_5V+SHT0_8+SHT1_8+MSC; // ADC on,Vref+ on, Vref+=2.5V,

 // Sampling_time=256/fmclk=40us for all !!!!!!!!!

 // multiple sample as soon as possible

 ADC12CTL1 = SHP+ADC12SSEL_3+CONSEQ_1; // (cstartadr = 0), (Sampling started with Sofware),Sample

pulse mode

 // clk div =1, clk

= SMCLK, sequence mode = sequence of channel

 ADC12IE = BIT2+BIT6+BITA; //+BITD; // enable interrupt for gyro, SS and temp measures //magnetometer

current

 wait_microsecond(20000); // wait ADC reference voltage stabilization

 // - Magnetometer

 init_magnetometer_and_SPI();

 // - Magnetotorquers

 init_magnetotorquers_and_timerB();

 //---

 // Enable general interrupts (set GIE bit)

 _EINT();

// init_flash(); // init flash registers

// launch_the_program_only_once((char *)INFO_MEM_ADR);

 // Enable sensors

 enable_magnetometer(1);

 enable_gyroscopes(1);

 enable_sunsensors(1);

 enable_ext_ADCSBtemp_sens(1);

 // Enable actuators

 enable_magnetotorquers(1);

 P1OUT |= BIT0; // enable multiplexers (will be removed in the new adcs board)

!!!

 //---

 // MAIN LOOP

 //---

 while(1) //

 {

 if(!(ADCSTime%((1000*T_MEASURE)/T_TIMERA0))) // F_MEASURE

 //if(!(ADCSTime%(1000/(F_MEASURE*T_TIMERA0)))) // F_MEASURE

 {

// DCOCTL=dco<<5;

// spi_send_command(0xF5,offset); // MM X offset

// spi_send_command(0xF6,offset); // MM Y offset

// spi_send_command(0xF7,offset); // MM Z offset

// spi_send_command(0xF8,gain); // MM X gain 0x00 = 18.2dB, 0x10 = 23dB, 0x1F =

27.5dB

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 83 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

// spi_send_command(0xF9,gain); // MM Y gain

// spi_send_command(0xFA,gain); // MM Z gain

 start_magnetometer_measure(ADCSTime); // start MM measure first, because it's the

longest measure!

 sunsensors_measure(ADCSTime);

 gyroscopes_start_measure(ADCSTime); // must be done after sun sensor

??????????????!!!!!!!!!!!

 start_temperature_measure(ADCSTime);

 _LED1TOGGLE;

 }

 if(magnetometer_status() == 2) // read magnetometer corrected measures

 {

 unsigned char XYZT[4];

 TIME timeStamp;

 read_magnetometer_measure(0,XYZT,&timeStamp);

// write_flash_char(XYZT[0],(char*)(ENDOF_PROG_ADR + i)); //write X

// write_flash_char(XYZT[1],(char*)(ENDOF_PROG_ADR + 1*FLASH_TAB_SIZE + i)); //write Y

// write_flash_char(XYZT[2],(char*)(ENDOF_PROG_ADR + 2*FLASH_TAB_SIZE + i)); //write Z

// write_flash_char(XYZT[3],(char*)(ENDOF_PROG_ADR + 3*FLASH_TAB_SIZE + i)); //write T

// write_flash_char(temperature,(char*)(ENDOF_PROG_ADR + 4*FLASH_TAB_SIZE + i));

 //write Temp

// write_flash_int(i,(int*)(ENDOF_PROG_ADR + 5*FLASH_TAB_SIZE + 2*i)); //write

meas number

//

// i++;

// if(i==FLASH_TAB_SIZE)

// while(1) // stuck the program here ! Because end of free memory has been

reached

// {

// _LED1OFF;

// LPM0;

// }

 }

 if(gyroscopes_status() == 2) // read gyroscopes corrected measures

 {

 int gyrXYZ_[3];

 TIME timeStamp1;

 read_gyroscopes_measure(0, gyrXYZ_,&timeStamp1, ADCSBoard_temp,CB_temp);

 }

 if(sunsensors_status() == 2) // read sunsensors corrected measures

 {

 int ss_angle[6][2];

 TIME timeStamp2;

 read_sunsensors_measure(0, ss_angle, &timeStamp2);

 }

 if(temperature_status() == 2) // read temperature corrected measures

 {

 char T_int_;

 TIME timeStamp3;

 read_temperature_measure(0, &ADCSBoard_temp, &CB_temp, &T_int_, &timeStamp3);

 ADCSTime_correct_temp_drift(ADCSBoard_temp);

 }

 if(!(ADCSTime%(1000/(4*T_TIMERA0)))) //4Hz, TO TEST MAGNETOTORQUERS, must be removed

!!

 {

 set_PWM_magnetotorquerX(pwmX); // the PWM rate is incremented

 set_PWM_magnetotorquerY(pwmX);

 set_PWM_magnetotorquerZ(pwmX);

 pwmX +=1;

 if (pwmX > 100) pwmX = 0;

 }

 LPM0; // Enter low power mode

 }

}

//---

// Compute DCO Clock freqency temperature drift

//---

void ADCSTime_correct_temp_drift(char temperature) // fucntion to be verifired

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

{

 fmclk = FMCLK0 + (((long)(temperature-TEMP0))*FMCLK_T_DRIFT*FMCLK0)/1000000;

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 84 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 TACCR0 = (T_TIMERA0*(unsigned long)fmclk)>>3; // Set TimerA0 compare, an interrupt each T_TIMERA0

}

//---

// Timer A0 interrupt service routine

//---

__interrupt void Timer_A_int (void);

TIMERA0_ISR(Timer_A_int)

__interrupt void Timer_A_int (void)

{

 ADCSTime++;

 LPM0_EXIT; // exit low power mode --> main loop

}

//---

// Analog to digital ADC12 interrupt service routine

//---

__interrupt void adc_int (void);

ADC12_ISR(adc_int)

__interrupt void adc_int (void)

{

 //look for interrupt source

 if(ADC12IV == 0x0A) // gyroscopes

 gyroscopes_interrupt();

 else if(ADC12IV == 0x12) // sun sensors

 {

 sunsensors_interrupt();

 LPM0_EXIT; // exit low power mode --> return in "sunsensors_measure"

 }

 else if(ADC12IV == 0x1A) // temperatures

 temperature_interrupt();

 //else if(ADC12IV == 0x20) // magnetotorquer current

}

//**

/*

* File : adcs_general_parameters_and_init_msp.h

* Created by Hervé Péter-Contesse

* April 2007

*

* Header file for use of the ADCS microcontroller (SwissCube project).

* It contains all general and global paramters wich can be device specific --> have to be measured !!!

*/

//--

#ifndef ADCS_GENERAL_PARAM_H_

#define ADCS_GENERAL_PARAM_H_

//---

// TIMING PARAMETERS

#define FMCLK0 6500 // [kHz] !!!!!!! nominal MCLK clock frequency DEVICE SPECIFIC, NEED TO BE MEASURED

!!!!!!!!

 // max frequency 7.35MHz@3.3V !!!

#define TEMP0 25 // [°C] temperature with which FMCLK0 has been measured

#define FMCLK_T_DRIFT (-1000) // [ppm/°C] MCLK temperature drift

extern unsigned short int fmclk; // actual MCLK clock frequency [kHz], to be adapted with temperature

#define CYCLE 10 // number of MCLK period per while/for loop turn (measured)

void wait_microsecond(unsigned int us); // wait function for short wait (>2us and < T_TIMERA0)

#define T_TIMERA0 50 // [ms] TIMER A0 interrupt perdiod/frequency --> used as ACDS clock

 // !!! must be smaller than 70ms, because of overflow due to

temperature drift !!!

//#define F_MEASURE 2 // [Hz] Measurement frequency/rate (>=1 !!)

#define T_MEASURE 1 // [s] Measurement frequency/rate (>=1 !!)

typedef unsigned long TIME; // deffine the TIME type for use in every files.

extern TIME ADCSTime; // time for ADCS board, time counter, incremented each T_TIMERA0

 // --> unit = [T_TIMERA0]

//---

#define N_MEASURE 10 // Number of stored measures for all sensors

//---

// ADRESSES FOR FLASH WRITE

// used for the measures only

// ONLY VALID FOR MSP430F169 AND DEPENDS ON THE PROGRAM SIZE TOO !

#define INFO_MEM_ADR (unsigned int)0x1000

#define ENDOF_PROG_ADR (unsigned int)0x2400 // end of program adress

#define ENDOF_MEM_ADR (unsigned int)0xFE0F // maximum adress which can be written

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 85 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

#define FLASH_TAB_SIZE (unsigned int)8336 // table size

//---

// DEBUG LED

#define _LED1ON P2OUT|=0x10

#define _LED1OFF P2OUT&=~0x10

#define _LED1TOGGLE P2OUT^=0x10

// other

unsigned int adc2volt(unsigned int adc); //convert in 1e-4 volt ; must be supressed

!!!

#endif /*ADCS_GENERAL_PARAM_H_*/

//**

/*

* File : adcs_general_parameters_and_functions.c.h

* Created by Hervé Péter-Contesse

* April 2007

*

* Source file for use of the ADCS microcontroller (SwissCube project).

* It contains all general and global parameters wich can be device specific --> have to be measured !!!

*/

//--

#include <msp430x16x.h>

#include "adcs_general_parameters_and_functions.h"

void wait_microsecond(unsigned int us) // wait function for short wait (>2us and < T_TIMERA0)

{

 unsigned int i,limit;

 limit = ((long)us*FMCLK0)/CYCLE/1000;

 for(i=0;i<limit;i++);

}

unsigned int adc2volt(unsigned int adc)

{

 return ((unsigned long)adc*(unsigned long)25000)>>12;

}

E.3.3 Magnetometer

//**

/*

* File : adcs_magnetometer.h

* Created by Hervé Péter-Contesse

* April 2007

*

* Header file for use of the ADCS magnetometer (SwissCube project).

* This file provide all functions to initialize and read the magnetometers sensors.

* It uses an SPI interface (USART1), IO port and other interrupts.

*/

//--

/*

 * Pin configuration :

 * E2 = P1.6

 * INT = P2.3

 * RSTN = P4.7

 * CS = P5.0

 * SI = P5.1

 * SO = P5.2

 * SK = P5.3

 * MCLK = P5.5

 */

//--

#ifndef ADCS_MAGNETOMETER_H_

#define ADCS_MAGNETOMETER_H_

#include "adcs_general_parameters_and_functions.h"

void init_magnetometer_and_SPI(void); // initialisations

void enable_magnetometer(char on_off); // 1=enable, 0=disable

void start_magnetometer_measure(TIME time_stamp_); // start measure : Be carefull, measurement time is about

170ms

int read_magnetometer_measure(unsigned char index, unsigned char XYZTmm_[4], TIME *time_stamp_);

 // index = 0 -> last measure (most recent), index = 1 -> previous measure, ...

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 86 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 // be carefull with index ! it must be lower than N_MEASURE-1 ! return -1 if index>N_MEASURE-1, 0 else

int magnetometer_status(void); // return 1 if measuring, 2 if a new measure is available and 0 else.

 // a call of function

read_magnetometer_measure set status to 0 if index=0.

void spi_send_command(char adress,char value); // must be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

#endif /*ADCS_MAGNETOMETER_H_*/

//**

/*

* File : adcs_magnetometer.c

* Created by Hervé Péter-Contesse

* April 2007

*

* Source file for use of the ADCS magnetometer (SwissCube project).

* This file provide all functions to initialize and read the magnetometers sensors.

* It uses an SPI interface (USART1), IO port and other interrupts.

*/

//--

/*

 * Pin configuration :

 * E2 = P1.6

 * INT = P2.3

 * RSTN = P4.7

 * CS = P5.0

 * SI = P5.1

 * SO = P5.2

 * SK = P5.3

 * MCLK = P5.5

 */

//--

#include <msp430x16x.h>

#include "adcs_magnetometer.h"

//--

// Global variables declaration

//--

// measure variables

unsigned char XYZTmm[4][N_MEASURE]; // measures circular buffer

TIME time_stamp[N_MEASURE]; // time stamp for each measure

char measi_mm = 0; // measure index

char measf_mm = 0; // flag, indicates if the MM is curretly measuring

// SPI variables

#define RXBUFSIZE 8 //must be a 2 multiple

unsigned char rxbuf[RXBUFSIZE]; // receive buffer

char rxbufi = 0; // rxbuf index

//--

// Internal functions declaration

//--

void init_mm_parameters(void);

void spi_ask_meas_res(char adress);

//void spi_send_command(char adress,char value);

//--

// External functions definition

//--

void init_magnetometer_and_SPI(void) // initialisations

{

 // -- SPI interface (USART1), 3-pin mode

 U1CTL = CHAR + SYNC + MM + SWRST; // 8-bit + SPI + Master + reset

 U1TCTL = SSEL1 + STC; // (L when idle) + SMCLK + 3-wire

 U1BR0 = 0x02; U1BR1 = 0x00; // SPICLK = SMCLK/2 (maximum clock speed !!!)

 U1MCTL = 0x00; // no modulator used in SPI mode

 ME2 |= USPIE1; // Module enable

 U1CTL &= ~SWRST; // SPI enable (clear reset bit)

 IE2 |= URXIE1; // RX and TX interrupt enable

 // -- INT pin P2.3 for measure complete

 P2IES = 0; // interrupt on rising edge

 P2IFG = 0; // clear interrupt flag

 P2IE = BIT3; // enable interrupt

}

void enable_magnetometer(char on_off) // enable or disable --> must do some init!

{

 if(on_off) // ON

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 87 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 {

 // all pins, included SPI pins, are configured only now, because they can source power into MM

 // (even if E2 = 0!)

 P1OUT |= 0x40; // Power on

 P4OUT |= 0x80; // set RSTN (not MM reset)

 P5SEL = 0x0E; // config SPI IO/peripherals (not MCLK P5.5), CS=IO

 init_mm_parameters(); // init

 }

 else if(!on_off) // OFF

 {

 P5SEL = 0x00; // Stop MCLK out (if not stopped yet) and SPI

 P4OUT &= ~0x80; // clear RSTN

 P1OUT &= ~0x40; // Power off

 }

}

void start_magnetometer_measure(TIME time_stamp_) // measurement time is about 170ms for MCLK=5MHz

{

 P5SEL |= 0x20; // Start MCLK out

 spi_send_command(0xF3,0x00); // send measure command

 time_stamp[measi_mm] = time_stamp_; // store time stamp

 measf_mm = 1; // measuring

}

int read_magnetometer_measure(unsigned char index, unsigned char XYZTmm_[4], TIME *time_stamp_)

{

 char i;

 if(index > N_MEASURE -1) return -1; // error with index

 i=measi_mm-1-(char)index;

 if(i<0) i += N_MEASURE;

 XYZTmm_[0]=XYZTmm[0][i]; XYZTmm_[1]=XYZTmm[1][i];

 XYZTmm_[2]=XYZTmm[2][i]; XYZTmm_[3]=XYZTmm[3][i];

 *time_stamp_ = time_stamp[i];

 if(!index) // if last measure has been read

 measf_mm=0; // no new measure available

 return 0;

}

int magnetometer_status(void)

{

 return measf_mm;

}

//--

// Internal functions definition

//--

// init

void init_mm_parameters(void)

{

// int i,j; // clear table !!!

// for(i=0;i<4;i++)

// for(j=0;j<N_MEASURE;j++)

// XYZTmm[i][j] = 0x00;

 spi_send_command(0xF4,0xF0); // MM MCLK setting, int. time 20ms, rectangular wave (0x80 = 10ms,

0xF0 = 20ms)

 spi_send_command(0xF5,0x00); // MM X offset

 spi_send_command(0xF6,0x00); // MM Y offset

 spi_send_command(0xF7,0x00); // MM Z offset

 spi_send_command(0xF8,0x0F); // MM X gain 0x00 = 18.2dB, 0x10 = 23dB, 0x1F = 27.5dB

 spi_send_command(0xF9,0x10); // MM Y gain

 spi_send_command(0xFA,0x11); // MM Z gain

// spi_send_command(0xF8,0x00); // MM X gain 0x00 = 18.2dB, 0x10 = 23dB, 0x1F = 27.5dB

// spi_send_command(0xF9,0x00); // MM Y gain

// spi_send_command(0xFA,0x00); // MM Z gain

}

// read measures result

void spi_ask_meas_res(char adress)

{

 int saverxbufi;

 P5OUT |= 0x01; // CS H

 while((IFG2 & UTXIFG1) == 0); // wait until U1TXBUF is free

 U1TXBUF = adress; // send command

 while((IFG2 & UTXIFG1) == 0); // wait until U1TXBUF is free

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 88 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 rxbufi = 0;

 U1TXBUF = 0x00; // send nothing to receive data

 while((IFG2 & UTXIFG1) == 0); // wait until U1TXBUF is free

 U1TXBUF = 0x00; // send nothing to receive data

 saverxbufi = rxbufi;

 while(saverxbufi == rxbufi) ; // wait until send is finished // a maximum time should be allowed

here !!!!!!!!!!!!!!!!!!!!!!!!

 P5OUT &= ~0x01; // CS L

}

// send a general command to the MM

void spi_send_command(char adress,char value)

{

 int saverxbufi;

 while(measf_mm); // check if mesure is complete

 P5OUT |= 0x01; // CS H

 while((IFG2 & UTXIFG1) == 0); // wait until U1TXBUF is free

 U1TXBUF = adress; // 1st Byte

 while((IFG2 & UTXIFG1) == 0);

 U1TXBUF = value; // 2nd Byte

 saverxbufi = rxbufi;

 while(saverxbufi == rxbufi); // wait until send is finished // a maximum time should be allowed

here !!!!!!!!!!!!!!!!!!!!!!!!

 P5OUT &= ~0x01; // CS L

}

//--

// Interrupts

//--

// - Measure complete interrupt

__interrupt void measure_complete_int (void); // Usually not a good idea to have long ISR, but in

PORT2_ISR(measure_complete_int) // this case the interrupt is not called

often

__interrupt void measure_complete_int (void)

{

 P2IFG &= ~BIT3; // clear interrupt flag, must be done before entering other interrupts !!!

 _EINT(); // enable interrupts, for SPI !

 P5SEL &= ~0x20; // Stop MCLK out

 spi_ask_meas_res(0xF0); // ask for X and Y measures

 XYZTmm[0][measi_mm] = rxbuf[1]; XYZTmm[1][measi_mm] = rxbuf[2]; // store measurements in table

 spi_ask_meas_res(0xF1); // ask for Z and Temperature measures

 XYZTmm[2][measi_mm] = rxbuf[1]; XYZTmm[3][measi_mm] = rxbuf[2]; // store measurements in table

 measi_mm = (measi_mm+1)%N_MEASURE;

 measf_mm=2; // new measure available

}

// - SPI Bytes receive interrupt

// this interrupt is called each time a byte has been sent, because a byte

// is received in the same time

__interrupt void SPI1_rx (void);

USART1RX_ISR(SPI1_rx)

__interrupt void SPI1_rx (void)

{

 rxbuf[rxbufi] = U1RXBUF;

 rxbufi = (++rxbufi)&(RXBUFSIZE-1); //circular buffer

}

E.3.4 Magnetotorquers

//**

/*

* File : adcs_magnetotorquers.h

* Created by Hervé Péter-Contesse

* May 2007

*

* Header file for use on the ADCS microcontroller (SwissCube project) to control

* the magnetotorquers.

* This file provide all functions to initialize and change the PWM settings for

* the 3 magnetotorquers.

*/

//--

/*

 * Pin configuration :

 * -- MT1-X

 * E4 P2.0

 * PWM1+ P4.1

 * PWM1- P4.2

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 89 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 * -- MT2+Y

 * E5 P2.1 --> will be supressed !!!

 * PWM2+ P4.3

 * PWM2- P4.4

 * -- MT3-Z

 * E6 P2.2 --> will be supressed !!!

 * PWM3+ P4.5

 * PWM3- P4.6

 */

//--

#ifndef MAGNETOTORQUERS_H_

#define MAGNETOTORQUERS_H_

void init_magnetotorquers_and_timerB(void); // initializations

void enable_magnetotorquers(char on_off); // 1=enable, 0=disable

int set_PWM_magnetotorquerXYZ(char pwmX, char pwmY, char pwmZ); // set PWM ratio for all magnetotorquers

 // values are between [-

100,100]% ; negatives values simply invert

 // the current in the

magnetotorquers ; 0 = no torque

int set_PWM_magnetotorquerX(char pwmX); // set PWM ratio for magnetotorquer X only

int set_PWM_magnetotorquerY(char pwmY);

int set_PWM_magnetotorquerZ(char pwmZ);

void correct_magnetotorquers_temperature_drift(char tempX, char tempY, char tempZ);

#endif /*MAGNETOTORQUERS_H_*/

//**

/*

* File : adcs_magnetotorquers.c

* Created by Hervé Péter-Contesse

* May 2007

*

* Source file for use on the ADCS microcontroller (SwissCube project) to control

* the magnetotorquers.

* This file provide all functions to initialize and change the PWM settings for

* the 3 magnetotorquers.

*/

//--

/*

 * Pin configuration :

 * -- MT1-X

 * E4 P2.0

 * PWM1+ P4.1

 * PWM1- P4.2

 * -- MT2+Y

 * E5 P2.1 --> will be supressed !!!

 * PWM2+ P4.3

 * PWM2- P4.4

 * -- MT3-Z

 * E6 P2.2 --> will be supressed !!!

 * PWM3+ P4.5

 * PWM3- P4.6

 */

//--

#include <msp430x16x.h>

#include "adcs_general_parameters_and_functions.h"

#include "adcs_magnetotorquers.h"

#define FPWM0 32000 // [Hz] PWM frequency/TimerB frequency, !!!!!!!!!!!!!!!!!!!! mettre en kHz

 // Max PWM freq = FMCLK0/2/100 = 32.5kHz for FMCLK0 =6.5MHz

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 // Must be >500Hz (because of the MT cut frequency)

 // It is better if it's >>1.1kHz because it's the max frame mecanical

frequency

 // the frequency drift due to temperature is not corrected here,

because it isn't important

#define OUT_PLUS (OUTMOD_2 + CLLD_2)

#define OUT_MINUS CLLD_2

//--

// Global variables declaration

//--

unsigned long fpwm = FPWM0; // must be supressed !!

char pwmX_gl = 0, pwmY_gl = 0, pwmZ_gl = 0;

//--

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 90 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

// Internal functions declaration

//--

//--

// External functions definition

//--

void init_magnetotorquers_and_timerB(void) // initialization

{

 TBCCTL1 = TBCCTL2 = TBCCTL3 = TBCCTL4 = TBCCTL5 = TBCCTL6 = 0 ;

 TBCCR0 = (((unsigned long)FMCLK0*1000)/FPWM0)>>1; // timer frequency / PWM frequency

 !!!!!!!!!!!!!!!! changer en kHz

 TBCTL = TBSSEL_2 + ID_0 + MC_3; // (16-bit timer), SMCLK, divider 1,

 // up/down

mode --> div tot = 2, start timer

 // max PWM

freq = FMCLK0/2/100

}

void enable_magnetotorquers(char on_off) // enable 1 or disable 0

{

 if(on_off) // MT ON

 {

 P2OUT |= BIT0 + BIT1 + BIT2; // Power on H-bridge

 //TBCCTL1 = TBCCTL2 = CLLD1; //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 }

 if(!on_off) // MT OFF

 {

 // out mode 0 = OUT, OUT = Low for mode 0 --> stop PWM

 TBCCTL1 = TBCCTL2 = TBCCTL3 = TBCCTL4 = TBCCTL5 = TBCCTL6 = 0;

 //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 P2OUT &= ~(BIT0 + BIT1 + BIT2); // Power off H-bridge

 }

}

int set_PWM_magnetotorquerXYZ(char pwmX, char pwmY, char pwmZ)

{

 return 0;

}

int set_PWM_magnetotorquerX(char pwmX) // set PWM ratio for magnetotorquer X only

{

 if(pwmX > 100 || pwmX < -100)

 return -1;

 else if(pwmX>=0) // set current direction

 {

 // for simple PWM

 TBCCTL1 = OUTMOD_2; // out mode 2 toggle/reset, output Low for mode 0

 TBCCTL2 = 0; // out mode 0, output Low

 TBCCR1 = ((unsigned long)TBCCR0*pwmX)/100; // set ratio // put in correct temp !!!!!!!

 // for double PWM

// TBCCTL2 = OUTMOD_6;

// TBCCR2 = TBCCR1;

 }

 else

 {

 TBCCTL1 = 0; // out mode 0, output Low

 TBCCTL2 = OUTMOD_2; // out mode 2 toggle/reset, output Low for mode 0

 TBCCR2 = ((unsigned long)TBCCR0*(-pwmX))/100; // set ratio // put in correct temp

!!!!!!!

 }

 TBCCR0 = (((unsigned long)FMCLK0*1000)/fpwm)>>1; // to change the frequence manually, must be

supressed !!!

 return 0;

}

int set_PWM_magnetotorquerY(char pwmY)

{

 if(pwmY > 100 || pwmY < -100)

 return -1;

 else if(pwmY>=0) // set current direction

 {

 TBCCTL3 = OUTMOD_2; // out mode 2 toggle/reset, output Low for mode 0

 TBCCTL4 = 0; // out mode 0, output Low

 TBCCR3 = ((unsigned long)TBCCR0*pwmY)/100; // set ratio // put in correct temp !!!!!!!

 }

 else

 {

 TBCCTL3 = 0; // out mode 0, output Low

 TBCCTL4 = OUTMOD_2; // out mode 2 toggle/reset, output Low for mode 0

 TBCCR4 = ((unsigned long)TBCCR0*(-pwmY))/100; // set ratio // put in correct temp

!!!!!!!

 }

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 91 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 TBCCR0 = (((unsigned long)FMCLK0*1000)/fpwm)>>1; // !!!

 return 0;

}

int set_PWM_magnetotorquerZ(char pwmZ)

{

 if(pwmZ > 100 || pwmZ < -100)

 return -1;

 else if(pwmZ>=0) // set current direction

 {

 TBCCTL5 = OUTMOD_2; // out mode 2 toggle/reset, output Low for mode 0

 TBCCTL6 = 0; // out mode 0, output Low

 TBCCR5 = ((unsigned long)TBCCR0*pwmZ)/100; // set ratio // put in correct temp !!!!!!!

 }

 else

 {

 TBCCTL5 = 0; // out mode 0, output Low

 TBCCTL6 = OUTMOD_2; // out mode 2 toggle/reset, output Low for mode 0

 TBCCR6 = ((unsigned long)TBCCR0*(-pwmZ))/100; // set ratio // put in correct temp

!!!!!!!

 }

 TBCCR0 = (((unsigned long)FMCLK0*1000)/fpwm)>>1; // !!!

 return 0;

}

void correct_magnetotorquers_temperature_drift(char tempX, char tempY, char tempZ)

{

}

//--

// Internal functions definition

//--

//--

// Interrupts

//--

// NO INTERRUPT NEEDED !!!

E.3.5 Gyroscopes

//**

/*

* File : adcs_gyroscopes.h

* Created by Hervé Péter-Contesse

* June 2007

*

* Header file for use on the ADCS microcontroller (SwissCube project) to do

* measurement with the gyroscopes.

* This file provide all functions to initialize the 12-bit ADC of the MSP and to

* use it to measure the 3 analog signals from the 2 IDG 1000??? gyroscopes

*/

//--

 /*

 * Pin configuration :

 * - gyroscopes

 * E1 P1.5

 *

 * - Analog Input

 * GYR+X P6.0/A0 !!!!!!!!!!!!!

 * GYR+Y P6.1/A1 !!!!!!!!!!!!!

 * GYR+Z P6.2/A2 !!!!!!!!!!!!!

 */

//--

#ifndef ADCS_GYROSCOPES_H_

#define ADCS_GYROSCOPES_H_

void enable_gyroscopes(char on_off); // 1=enable, 0=disable,

 // !!!!!! be carefull, the

gyroscope startup time is enormous !!!!!!

 // !!!!!! about 400-500ms

!!!!!!

 // !!!!!! be sure this

waiting time is reached before starting measure!!!!!!

void gyroscopes_start_measure(TIME time_stamp_); // start the ADC conversion of the gyroscopes signals

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 92 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

int read_gyroscopes_measure(unsigned char index, // read the corrected

gyroscopes

 int gyrXYZ_[3], TIME *time_stamp_,

 // values in °/s,

 char ADCS_temp_XY, char CB_temp_Z); // actual

temperatures

void gyroscopes_interrupt(void); // function called in the interrupt ADC service routine to catch

 // the gyroscopes measures

int gyroscopes_status(void); // return 1 if measuring, 2 if a new measure is available and 0 else.

 // a call of function

read_gyroscopes_measure set status to 0 if index=0.

#endif /*ADCS_GYROSCOPES_H_*/

//**

/*

* File : adcs_gyroscopes.h

* Created by Hervé Péter-Contesse

* June 2007

*

* Header file for use on the ADCS microcontroller (SwissCube project) to do

* measurement with the gyroscopes.

* This file provide all functions to initialize the 12-bit ADC of the MSP and to

* use it to measure the 3 analog signals from the 2 IDG 1000??? gyroscopes

*/

//--

 /*

 * Pin configuration :

 * - gyroscopes

 * E1 P1.5

 *

 * - Analog Input

 * GYR+X P6.0/A0 !!!!!!!!!!!!!

 * GYR+Y P6.1/A1 !!!!!!!!!!!!!

 * GYR+Z P6.2/A2 !!!!!!!!!!!!!

 */

//--

#include <msp430x16x.h>

#include "adcs_general_parameters_and_functions.h"

#include "adcs_gyroscopes.h"

//--

// Global variables declaration

//--

unsigned int gyrXYZ[3][N_MEASURE]; // measures circular buffer !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TIME time_stamp_gyr[N_MEASURE]; // time stamp for each measure

char measi_gyr = 0; // measure index

char measf_gyr = 0; // flag, indicates if the MM is curretly measuring

unsigned int a_gyr[3][N_MEASURE]; // must be supressed !!!

//--

// Internal functions declaration

//--

//--

// External functions definition

//--

void enable_gyroscopes(char on_off) // enable or disable, not init needed because the ADC is configured

 // when the measure is started

{

 if(on_off) // ON

 P1OUT |= BIT5;

 else if(!on_off) // OFF

 P1OUT &= ~BIT5;

}

void gyroscopes_start_measure(TIME time_stamp_)

{

 time_stamp_gyr[measi_gyr] = time_stamp_; // store time stamp

 measf_gyr = 1; // measuring

 while(ADC12CTL1 & BUSY); // wait in case ADC in doing another convertion

 ADC12CTL1 = CSTARTADD_0+SHP+ADC12SSEL_3+CONSEQ_1; // cstartadr = 0, (Sampling started with

Sofware),Sample pulse mode

 // clk div =1, clk

= SMCLK, sequence mode = sequence of channel

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 93 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 ADC12CTL0 |= ENC+ADC12SC; // start conversion !

 ADC12CTL0 &= ~ENC; // clear enc bit (sequence conversion continue)

}

int read_gyroscopes_measure(unsigned char index, int gyrXYZ_[3], TIME *time_stamp_,

 char ADCS_temp_XY, char CB_temp_Z) // must

correct temperature drift !!!!!!!!!!!!

{

 char i;

 if(index > N_MEASURE -1) return -1; // error with index

 i=measi_gyr-1-(char)index; // check borders

 if(i<0) i += N_MEASURE;

 // return measures, must do convertions bit-->°/s here !!!!!!!!!!!!!!!!!!!!

 gyrXYZ_[0] = gyrXYZ[0][i]; gyrXYZ_[1] = gyrXYZ[1][i]; gyrXYZ_[2] = gyrXYZ[2][i];

 *time_stamp_ = time_stamp_gyr[i];

 if(!index) // if last measure has been read

 measf_gyr=0; // no new measure available

 return 0;

}

void gyroscopes_interrupt(void)

{

 gyrXYZ[0][measi_gyr] = ADC12MEM0; // signal1

 gyrXYZ[1][measi_gyr] = ADC12MEM1; // ref1

 gyrXYZ[2][measi_gyr] = ADC12MEM2; // signal2

 a_gyr[0][measi_gyr] = adc2volt(gyrXYZ[0][measi_gyr]); // must be supressed

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 a_gyr[1][measi_gyr] = adc2volt(gyrXYZ[1][measi_gyr]); // !!!

 a_gyr[2][measi_gyr] = adc2volt(gyrXYZ[2][measi_gyr]); // !!!

 measi_gyr = (measi_gyr+1)%N_MEASURE; // increment measure index

 measf_gyr=2; // new gyroscope measure available

}

int gyroscopes_status(void)

{

 return measf_gyr;

}

//--

// Internal functions definition

//--

//--

// Interrupts

//--

//NO INTERRUPT HERE

E.3.6 Sun sensors

//**

/*

* File : adcs_sun_sensors.h

* Created by Hervé Péter-Contesse

* June 2007

*

* Header file for use on the ADCS microcontroller (SwissCube project) to do

* measurement with the sun sensors.

* This file provide all functions to initialize the 12-bit ADC of the MSP and to

* use it to measure the 24 analog signals from the 6 DTU sun sensors

*/

//--

/*

 * Pin configuration :

 *

 * - Multiplexers

 * EN P1.0 : enable Multiplexers --> will be supressed !!

 * A0 P1.1 : change gate

 * A1 P1.2

 * A2 P1.3

 *

 * - Sun sensors

 * E3 P1.7

 *

 * - Analog Input

 * SS#_s1 P6.3/A3 : sunsensors 1-6 signal 1

 * SS#_r1 P6.4/A4 : sunsensors 1-6 reference 1

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 94 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 * SS#_s2 P6.5/A5

 * SS#_r2 P6.6/A6

 *

 */

//--

#ifndef ADCS_SUN_SENSORS_H_

#define ADCS_SUN_SENSORS_H_

void enable_sunsensors(char on_off); // 1=enable, 0=disable,

 // !!!!!! be carefull with

startup time !!!!!!

void sunsensors_measure(TIME time_stamp_); // make all ADC conversion to measure the gyroscopes signals

 // and changes the

multiplexers outputs.

 //!!!! This

function does not start the measure but DO the !!!!

 //!!!! measures so

it is quite long to execute !!!!

int read_sunsensors_measure(unsigned char index, int ss_angle[6][2], TIME *time_stamp_); // read the

 // corrected sunsensors angle in °

void sunsensors_interrupt(void); // function called in the interrupt ADC service routine to catch

 // the sunsensors measures

int sunsensors_status(void); // return 1 if measuring, 2 if a new measure is available and 0 else.

 // a call of function

read_sunsenors_measure set status to 0 if index=0.

#endif /*ADCS_SUN_SENSORS_H_*/

//**

/*

* File : adcs_sun_sensors.c

* Created by Hervé Péter-Contesse

* June 2007

*

* Source file for use on the ADCS microcontroller (SwissCube project) to do

* measurement with the sun sensors.

* This file provide all functions to initialize the 12-bit ADC of the MSP and to

* use it to measure the 24 analog signals from the 6 DTU sun sensors

*/

//--

/*

 * Pin configuration :

 *

 * - Multiplexers

 * EN P1.0 : enable Multiplexers --> will be supressed !!

 * A0 P1.1 : change gate

 * A1 P1.2

 * A2 P1.3

 *

 * - Sun sensors

 * E3 P1.7

 *

 * - Analog Input

 * SS#_s1 P6.3/A3 : sunsensors 1-6 signal 1

 * SS#_r1 P6.4/A4 : sunsensors 1-6 reference 1

 * SS#_s2 P6.5/A5

 * SS#_r2 P6.6/A6

 *

 */

//--

#include <msp430x16x.h>

#include "adcs_general_parameters_and_functions.h"

#include "adcs_sunsensors.h"

//--

// Global variables declaration

//--

unsigned int ss[6][4][N_MEASURE]; // measures circular buffer

TIME time_stamp_ss[N_MEASURE]; // time stamp for each measure

char measi_ss = 0; // measure index

char ss_index = 0; // sun sensor index (atual selected ss)

char measf_ss = 0; // flag, indicates if the MM is curretly measuring

unsigned int a[6][4][N_MEASURE]; // must be supressed !!!

//--

// Internal functions declaration

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 95 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

//--

//--

// External functions definition

//--

void enable_sunsensors(char on_off) // enable or disable, not init needed because the ADC is configured

 // when the measure is started

{

 if(on_off) // ON

 P1OUT |= BIT7;

 else if(!on_off) // OFF

 P1OUT &= ~BIT7;

}

void sunsensors_measure(TIME time_stamp_)

{

 unsigned int mux;

 ss_index = 0;

 time_stamp_ss[measi_ss] = time_stamp_; // store time stamp

 measf_ss = 1; // measuring

 while(ADC12CTL1 & BUSY); // wait in case ADC in doing another convertion

 while(ss_index <6) // do/wait until all measures are complete for the 6 sun sensors

 {

 int save_index = ss_index;

 mux = ss_index <<1; // change multiplexers inputs : sunsensor 0 to 5

 P1OUT |= mux;

 P1OUT &= mux|0xF1;

 //!! a wait is needed here if there are capacitors after the mux !!!

 ADC12CTL1 = CSTARTADD_3+SHP+ADC12SSEL_3+CONSEQ_1; // cstartadr = 3, (Sampling started with

Sofware),Sample pulse mode

 // clk div =1, clk

= SMCLK, sequence mode = sequence of channel

 ADC12CTL0 |= ENC+ADC12SC; // start conversion !

 while(save_index == ss_index) LPM0; // wait until the 4 measures are complete for 1

sunsensor

 }

 ADC12CTL0 &= ~ENC; // clear enc bit --> the ADC parameters can be modified

 measi_ss = (measi_ss+1)%N_MEASURE; // increment measure index

 measf_ss=2; // new measure available

}

int read_sunsensors_measure(unsigned char index, int ss_angle[6][2], TIME *time_stamp_)

{

 char i,j;

 if(index > N_MEASURE -1) return -1; // error with index

 i=measi_ss-1-(char)index; // check borders

 if(i<0) i += N_MEASURE;

 for(j=0;j<6;j++) // read all measures

 {

 ss_angle[j][0] = ss[j][0][i]/ss[j][1][i]; // must be completed !!!!!!!!!!!!!!!!!!

 ss_angle[j][1] = ss[j][2][i]/ss[j][3][i];

 }

 *time_stamp_ = time_stamp_ss[i];

 if(!index) // if last measure has been read

 measf_ss=0; // no new measure available

 return 0;

}

void sunsensors_interrupt(void)

{

 ss[ss_index][0][measi_ss] = ADC12MEM3; // signal1

 ss[ss_index][1][measi_ss] = ADC12MEM4; // ref1

 ss[ss_index][2][measi_ss] = ADC12MEM5; // signal2

 ss[ss_index][3][measi_ss] = ADC12MEM6; // ref2

 a[ss_index][0][measi_ss] = adc2volt(ss[ss_index][0][measi_ss]); // must be supressed

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 a[ss_index][1][measi_ss] = adc2volt(ss[ss_index][1][measi_ss]); // !!!

 a[ss_index][2][measi_ss] = adc2volt(ss[ss_index][2][measi_ss]); // !!!

 a[ss_index][3][measi_ss] = adc2volt(ss[ss_index][3][measi_ss]); // !!!

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 96 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 ss_index++;

}

int sunsensors_status(void)

{

 return measf_ss;

}

//--

// Internal functions definition

//--

//--

// Interrupts

//--

//NO INTERRUPT HERE

E.3.7 Temperature sensors

//**

/*

* File : adcs_temperature.h

* Created by Hervé Péter-Contesse

* June 2007

*

* Header file for use on the ADCS microcontroller (SwissCube project) to do

* measurement with the temperature sensors (MSP internal, external LM94022 on

* ADCS board and external LM94022 on connection board)

*/

//--

 /*

 * Pin configuration :

 * - enable ADCS temperature sensor

 * E0 P1.4

 *

 * - Analog Input

 * Temp P6.3/A3 : ADCS board temperature

 * CB_temp P6.4/A3 : Connection board temperature

 */

//--

#ifndef ADCS_TEMPERATURE_H_

#define ADCS_TEMPERATURE_H_

void enable_ext_ADCSBtemp_sens(char on_off); // 1=enable, 0=disable, ADCS board temperature sensor

 // !!!! be

carefull with statrup time !!!!

void start_temperature_measure(TIME time_stamp_);

int read_temperature_measure(unsigned char index, // read temperatres measures

 char *T_ext_, char *T_CB_, // [°C]

LM94022 ADCS board and connection board

 char *T_int_, TIME *time_stamp_); // [°C]

internal MSP sensor

void temperature_interrupt(void);

int temperature_status(void);

#endif /*ADCS_TEMPERATURE_H_*/

//**

/*

* File : adcs_temperature.c

* Created by Hervé Péter-Contesse

* June 2007

*

* Source file for use on the ADCS microcontroller (SwissCube project) to do

* measurement with the temperature sensors (MSP internal and external)

*/

//--

 /*

 * Pin configuration :

 * - enable ADCS temperature sensor

 * E0 P1.4

 *

 * - Analog Input

 * Temp P6.3/A3 : ADCS board temperature

 * CB_temp P6.4/A3 : Connection board temperature

 */

//--

#include <msp430x16x.h>

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 97 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

#include "adcs_general_parameters_and_functions.h"

#include "adcs_temperature.h"

//--

// Global variables declaration

//--

unsigned int T_ext[N_MEASURE]; // measures circular buffer

unsigned int T_CB[N_MEASURE];

unsigned int T_int[N_MEASURE];

TIME time_stamp_T[N_MEASURE]; // time stamp for each measure

char measi_T = 0; // measure index

char measf_T = 0; // flag, indicates if the MM is curretly measuring

unsigned int a_T[3][N_MEASURE]; // must be supressed !!!

signed int temp_degree[N_MEASURE]; // must be supressed !!!

//--

// Internal functions declaration

//--

char volt2temp_LM94022(int volt); // must be optimized with look-up table !!!!!!!!!!!!!!!!!!!!!!!

//--

// External functions definition

//--

void enable_ext_ADCSBtemp_sens(char on_off)

{

 if(on_off) // ON

 P1OUT |= BIT4;

 else if(!on_off) // OFF

 P1OUT &= ~BIT4;

}

void start_temperature_measure(TIME time_stamp_)

{

 time_stamp_T[measi_T] = time_stamp_; // store time stamp

 measf_T = 1; // measuring

 while(ADC12CTL1 & BUSY); // wait in case ADC in doing another convertion

 P1OUT |= 0x06<<1; // change multiplexers inputs : temperature ext and CB

 P1OUT &= (0x06<<1)|0xF1;

 //!! a wait is needed here if there are capacitors after the mux !!!

 ADC12CTL1 = CSTARTADD_8+SHP+ADC12SSEL_3+CONSEQ_1; // cstartadr = 0, (Sampling started with

Sofware),Sample pulse mode

 // clk div =1, clk

= SMCLK, sequence mode = sequence of channel

 ADC12CTL0 |= ENC+ADC12SC; // start conversion !

 ADC12CTL0 &= ~ENC; // clear enc bit (sequence conversion continue)

}

int read_temperature_measure(unsigned char index, char *T_ext_,

 char *T_CB_, char *T_int_, TIME *time_stamp_)

{

 char i;

 if(index > N_MEASURE -1) return -1; // error with index

 i=measi_T-1-(char)index; // check borders

 if(i<0) i += N_MEASURE;

 *T_ext_ = temp_degree[i];

 //*T_CB =

 //*T_int_ =

 *time_stamp_ = time_stamp_T[i];

 if(!index) // if last measure has been read

 measf_T=0; // no new measure available

 return 0;

}

void temperature_interrupt(void)

{

 T_ext[measi_T] = ADC12MEM8; // external temp

 T_CB[measi_T] = ADC12MEM9; // connnection board temp

 T_int[measi_T] = ADC12MEM10; // internal temp

 a_T[0][measi_T] = adc2volt(T_ext[measi_T]); // must be supressed

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 98 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

 temp_degree[measi_T] = volt2temp_LM94022(a_T[0][measi_T]); //temp 1e-1degree // must be supressed

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 //a_T[1][measi_T] = adc2volt(T_CB[measi_T]); // !!!

 a_T[2][measi_T] = adc2volt(T_int[measi_T]); // !!!

 measi_T = (measi_T+1)%N_MEASURE; // increment measure index

 measf_T = 2; // new gyroscope measure available

}

int temperature_status(void)

{

 return measf_T;

}

//--

// Internal functions definition

//--

char volt2temp_LM94022(int volt) // should use a look up table with the ADC 12-bit value

directly!!!!!!!!!!!!!!!

{ // for the momement, T is in [°C],

volt in 1e-4[V]

 if(volt<11590)

 return ((volt-11590)*5)/(-422)+50;

 else if(volt<15670)

 return ((volt-15670)*5)/(-408);

 else if(volt<19550)

 return ((volt-19550)*5)/(-388)-50;

 else

 return -51;

}

//--

// Interrupts

//--

//NO INTERRUPT HERE

E.4 Write in Flash memory

//**

/*

* File : adcs_magnetometer.h

* Created by Hervé Péter-Contesse

* May 2007

*

* Header file for use to read/write flash memory of the microcontroller (SwissCube project).

* This file provide all functions to initialize, read and write into the flash memory.

* The data or measurement can be stored into the flash memory, and get back using the debugger :

*

* !!! To do this : you have to connect the debugger without erasing the flash memory !!!

* !!! With Code composer Essential v2, do :

 !!!

* !!! project-->proprieties-->debug properties-->supress download and connect to target !!!

* !!! then run and use the memory view to get back the results

 !!!

*/

//--

#ifndef FLASH_H_

#define FLASH_H_

void init_flash(void); // init flash registers

void launch_the_program_only_once(char *flag_adress); // If this function is called at the beginning of

 // the main function, the program can only be started

 // once ! It write/check a flag in Flash memory

 // Usefull to store measurement in Flash !!!

 // You have to reload the program to run the program !

// the following function are used to write and erase flash :

// !!! be carefull with the adress : you can erase the running program itself !!!

void erase_flash_segment(char* adress); // erase a complete flash segment

void write_flash_int(int value, int* adress);

void write_flash_char(char value, char* adress);

#endif /*FLASH_H_*/

//**

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 99 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

/*

* File : flash.c

* Created by Hervé Péter-Contesse

* May 2007

*

* Source file for use to read/write flash memory of the microcontroller (SwissCube project).

* This file provide all functions to initialize, read and write into the flash memory.

* The data or measurement can be stored into the flash memory, and get back using the debugger :

*

* !!! To do this : you have to connect the debugger without erasing the flash memory !!!

* !!! With Code composer Essential v2, do :

 !!!

* !!! project-->proprieties-->debug properties-->supress download and connect to target !!!

* !!! then run and use the memory view to get back the results

 !!!

*/

//--

#include <msp430x16x.h>

#include "adcs_general_parameters_and_functions.h" //needed for "_LED1ON"

#include "flash.h"

#define F_FLASH 360 //[kHz] flash frequency generator, must be between 257kHz and 476kHz

void init_flash(void)

{

 int clk_divider = FMCLK0/F_FLASH;

 FCTL2 = FWKEY + FSSEL0 +clk_divider;

}

void launch_the_program_only_once(char* flag_adress)

{

 unsigned char i; // this line is necessary !!

 i = *flag_adress; // this line is necessary too!!

 if(i == 0xFF) // 1st program launch

 write_flash_char(0x01,flag_adress); // write flag in flash

 else

 while(1) // stuck the program here !

 {

 _LED1ON;

 LPM0;

 }

}

void erase_flash_segment(char* adress)

{

 _DINT(); // disable interrupt

 FCTL1 = FWKEY + ERASE; // Set Erase bit

 FCTL3 = FWKEY; // Clear Lock bit

 *adress = 0; // Dummy write to erase Flash seg

 FCTL1 = FWKEY; // Clear ERASE bit

 FCTL3 = FWKEY + LOCK; // Set LOCK bit

 _EINT(); // enable interrupt

}

void write_flash_int(int value, int* adress)

{

 _DINT(); // disable interrupt

 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

 FCTL3 = FWKEY; // Clear Lock bit

 *adress = value; // write in Flash

 FCTL1 = FWKEY; // Clear WRT bit

 FCTL3 = FWKEY + LOCK; // Set LOCK bit

 _EINT(); // enable interrupt

}

void write_flash_char(char value, char* adress)

{

 _DINT(); // disable interrupt

 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

 FCTL3 = FWKEY; // Clear Lock bit

 *adress = value; // write in Flash

 FCTL1 = FWKEY; // Clear WRT bit

 FCTL3 = FWKEY + LOCK; // Set LOCK bit

 _EINT(); // enable interrupt

}

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 100 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

E.5 Magnetometer and magnetotorquers model

E.5.1 Matlab Magnetometer model

% magnetometer_model.m

% Created by Hervé Péter-Contesse

% March 2007

% Modified by

%--

%

% Magnetometer model for determination and control algorithms

% (The magnotometer used is an AK8970N and return a result on 8bits)

%

% function measuredEMF = magnetometer_model(EMF)

%

% - h is the time period [s] (time space between two EMF values/row in input EMF

% vector) : must be SMALLER than MEASUREMENT TIME/3 (belongs to

% [40e-3;170e-3]/3 [s])! (see value below). IF THIS IS NOT POSSIBLE (for

% computation time?), put h=0 and use T only, but this model would not take

% into account the measurement time and measurement order

%

% - T is the measurement period [s] : a measure is done every t=k*T, k=0 for

% the fist input EMF vector row (t=0). Must be GREATER than MEASUREMENT

% TIME (belongs to [40e-3;170e-3] [s])! (see value below)

%

% - EMF is 3-by-n matrix containing the X,Y,Z (row) magnetic field

% components [nT] for the time tk = k*h, where h is the sampling time

% period and k<=n-1.

%

% - measEMF is a 3-by-floor(n*h/T) and return the XYZ magnetic components measured by

% the magnetometer [nT] (each component is handled separetely ; no

% interaction)

%

% This model doesn't take into account the linearity or the error due to

% the temperature variation (it just add noise for that), we assume theses

% corrections are made by the ADCS microcontroller.

function measEMF = magnetometer_model(h,T,EMF)

% Magnetometer parameters (these are experimental parameters !!!!)

measurement_time = 150e-3; % [s] time taken by one measure (XYZ), belongs to [40e-3;170e-3]

sensitivity = 1.80e-3; % [bit/nT] Sensitivity of the sensor (gain 23dB, 20ms = sens = 1.95e-3 ; gain

18.2dB, 20ms sens = 1.1e-3)

 % instanteneous, but is averaged during the measure

std_noise = 1.25 + 1.5; % [bit] Standard deviation of the white noise

saturation_p = 127; % [bit] Saturation (8bit)

saturation_m = -128;

if measurement_time > T

 error(['T must be greater than measurement_time=' num2str(measurement_time) 's']);

end

% Transfert function

[m n] = size(EMF);

if h == 0 % simplifed case

 EMF_ = EMF;

else % normal case, take intergration time into account

 if h> measurement_time

 error(['h must be smaller than measurement_time/3=' num2str(measurement_time/3) 's , or put h=0']);

 end

 n_ = floor(n*h/T);

 EMF_ = zeros([m n_]);

 for k=1:n_ % compute magnetometer integration time

 for i=1:m

 p = floor((k-1)*T/h+1) + floor(measurement_time/3*(i-1)/h);

 q = floor((k-1)*T/h+1) + floor(measurement_time/3*i/h);

 EMF_(i,k) = mean(EMF(i,p:q));

 end

 end

end

[m n] = size(EMF_);

Nc = round(sensitivity*EMF_ + std_noise*randn([m n])); % convert to bit and add noise

 Issue : 1 Rev : 3
Date : 23/06/2007
Page : 101 of 101

Ref.: S3_Phase_B-C-ADCS-1-3-ADCS_HW_and_System.docx

for i=1:m % apply saturation for XYZ

 for j=1:n

 if Nc(i,j) > saturation_p

 Nc(i,j) = saturation_p;

 elseif Nc(i,j) < saturation_m

 Nc(i,j) = saturation_m;

 end

 end

end

measEMF = Nc/sensitivity; % re-convert to magnetic field

E.5.2 Matlab Magnetotorquer model

% magnetometer_model.m

% Created by Hervé Péter-Contesse

% March 2007

% Modified by

%--

function [M] = magnetotorquer_model(ratio, B)

%

% Magnetotorquer model for determination and control algorithms.

% There are 3 perpendicular magnetotorquers : one for each X, Y and Z.

% Their torque can be modified changing the PWM ratio.

%

% This model assume the magnetotorquer temperature drift is corrected with

% the ADCS microcontroller with a knon precision (current and torque are

% not known exactly ; there is noise)

%

% function [M] = magnetotorquer_model(ratio, B)

%

% Inputs:

% - ratio : 3-element vector : PWM ratio /Power ratio for each X,Y and Z

% magnetotorquer. The value are in [-100,100]% (interger number!)

%

% - B : 3-element vector : earth magnetic field vector in the satellite

% fixed referential [Tesla]

%

% Outputs:

% - M : 3-element vector : torque vector in the satellite fixed

% referential[Nm]

% Magnetotorquer parameters:

I = 15e-3; % [A] maximum current

Ierror = 5/100; % [%] current precision

N = 427; % number of turns

l = 64.9e-3; % [m] mean dimension of the small side

L = 74.9e-3; % [m] mean dimension of the big side

A = l*L; % [m^2] enclosed area

mu = N*I*A; % [Am^2] maximum magnetic dipole moment

maxB = 60e-6; % [T] maximum earth's magnetic field at 400km

% Compute torque

if any(abs(ratio)>100)

 error(['ratio not in the range : ' num2str(ratio)]);

end

if norm(B)>maxB

 error(['earths magnetic field is too big (not in range) : ' num2str(B)]);

end

[m,n] = size(ratio);

ratio = round(ratio);

mu_v = mu*(1+Ierror*randn([m n])).*ratio/100;

M = cross(mu_v, B);

Appendix F Other

All other information, components datasheets, source codes… can be found in the project CD-
ROM.

	Record of revisions
	Introduction
	Design Requirements
	Design Assumptions and Approach
	Approach
	Disturbances
	Hardware assumptions

	Technical Description
	ADCS main board
	Board design
	MSP430F16x microcontrollers properties
	Software
	Second ADCS board revision

	Sensors
	Magnetometer
	Characteristics and parameters
	Electrical circuit
	Software
	Model for determination algorithms

	Gyroscopes
	Software

	Sun Sensors
	Description
	Software

	Actuators
	Magnetotorquers
	Design
	Coil resistance drift compensation
	MT manufacturing
	Electrical circuit
	Software
	Model for control algorithms

	Magnets

	Power budget

	Tests
	ADCS main board
	DCO frequency

	Magnetometer
	Measurement time
	Offset configuration
	Sensitivity and gain
	Vacuum
	Integration test with EPS

	Sun sensors
	Magnetotorquers
	Impedance measurement
	PWM rates and filters
	Outgassing

	Recommendations
	Conclusion
	Acknowledgments
	Contacts
	References
	Abbreviated terms
	ADCS board electrical schematic and PCB
	AHW1_4
	Electrical schematic
	PCB

	Sun sensors electrical schematic
	ADCS PCB usable area for the next board

	Magnetotorquers drawings
	Outer dimensions
	Winding parts
	Mould parts
	Transfer function

	Test procedures
	Magnetometer Vacuum test
	Hardware
	Procedure

	Magnetotorquer outgassing

	Interface Control Documents
	Electrical
	Data

	Software
	Perturbation calculation
	Magnetotorquer design
	ADCS SW
	Microcontroller programming in C recommendations
	Main file and General parameters
	Magnetometer
	Magnetotorquers
	Gyroscopes
	Sun sensors
	Temperature sensors

	Write in Flash memory
	Magnetometer and magnetotorquers model
	Matlab Magnetometer model
	Matlab Magnetotorquer model

	Other

