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1 Introduction

The SwissCube is a small satellite in the CubeSat format designed by
students from universities and high schools in Switzerland. Its main char-
acteristics are a mass of 1 kg and a volume of 10cm × 10cm × 10cm. This
document is a report for a Master project and adresses the problem of atti-
tude determination. The work is a continuation of the Controller Design [5]
and its aim is to design an estimator for the satellite.

A brief overview of the ADCS subsystem, its components and the satellite's
dynamics is presented in the �rst section. A review of the di�erent methods
commonly used in satellite attitude estimation and an introduction to the
estimation theory is also given. The performance analysis for the di�erent
algorithms is the subject of the last section.



2 General Overview

2.1 Overview

In the context of spacecraft, attitude control is the control of the angular
position and rotation of the spacecraft, either relative to the object that it
is orbiting, or relative to the celestial body. On the surface of Earth there
are straightforward references to determine a vehicle's position, whereas in
space the Attitude Determination and Control System (ADCS) has the task
to monitor the attitude of the satellite by combining data from di�erent
systems. Through the actuators, the ADCS can correct the angular position
and speed.

Figure 1 is a global view of the ADCS system architecture. The subsystems
can be arranged in two layers : hardware and software. The hardware layer
includes the sensors, the microcontroller and the actuators. The software
layer is constituted by the Earth Magnetic Field Model, the orbit propaga-
tor, the control algorithms and the determination algorithms.

The sensors used for the ADCS system are :

• A three-axis magnetometer to measure the Earth's magnetic �eld in-
tensity and direction.

• A three-axis gyroscope setup to measure the spinning rate for each axis.

• Six Sun Sensors to indicate the direction of the sun.

• Temperature sensors to compensate the drift of the other sensors.

The actuators are :

• Three magnetotorquers (coils) to produce a torque thanks to their in-
teraction with the Earth's magnetic �eld.

• (Passive actuators such as permanent magnets)

• (An Inertia wheel)



2 GENERAL OVERVIEW 6

The system can be separated in four main parts :

• A propagator to compute the orbital position of the satellite.

• An Earth's magnetic �eld model to compute the magnetic �eld local
intensity and direction.

• The control algorithm.

• The determination algorithm to �lter the sensors measurements.

This report will present the design and evaluation of the determination
algorithm. The analysis of the other subsystems performed by other students
are presented in [5], [7], [8], [12], [13] and [14].

Figure 1: Overall view of the ADCS system
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2.2 Model Validation

A model of the satellite dynamics was established in [5]. From there,
the dynamics will be considered in a non-inertial frame without the inertia
wheel. The orbital referential frame (ORF) speed will be considered constant
(~̇ωo = 0).

~̇ω = J−1 ~T − J−1(~ω × ~u) + J−1G∆[~ωo, ~u]q− ~s

q̇ = 1
2
GT ~ω

~u := J(~ω + RT ~ωo)
~s := (RT ~ωo)× ~ω

(1)

The following table shows the symbols used and their meaning

~ωo Orbital referential frame (ORF) speed
~ω Body rotational speed, relative to inertial referential
~T Torque applied in the body referential
J Body inertia
q Unit quaternion vector1

R Quaternion rotation matrix

where

∆[~v, ~w] =

(
~w · ~v (~w × ~v)T

~w × ~v ~w~vT + ~v ~wT − ~w · ~v I3

)
(2)

G =

 −q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 (3)

1Note that the quaternions have 4 components and by imposing a norm constraint,

q2
0 + q2

1 + q2
2 + q2

3 = 1 they represent the 3 degrees of freedom in attitude.



2 GENERAL OVERVIEW 8

The model can also be described as :



ω̇1

ω̇2

ω̇3

q̇0

q̇1

q̇2

q̇3


=



f1

(
~ω,q, ~T

)
f2

(
~ω,q, ~T

)
f3

(
~ω,q, ~T

)
f4

(
~ω,q, ~T

)
f5

(
~ω,q, ~T

)
f6

(
~ω,q, ~T

)
f7

(
~ω,q, ~T

)


(4)

Before the design of the estimator is started, certain aspects of the model
require additional tests. The linearized version of SwissCube's dynamics is
critical in order to achieve performance in the estimator. At �rst, the jaco-
bian is obtained by symbolic computation in MATLAB from the nonlinear
equations (1). The linearized model provided good performances compared
to the nonlinear model, as illustrated in �gure 2.2.

[
~̇ω
q̇

]
=

 ∂f1..3(~ω,q, ~T)
∂~ω

∂f1..3(~ω,q, ~T)
∂q

∂f4..7(~ω,q, ~T)
∂~ω

∂f4..7(~ω,q, ~T)
∂q

∣∣∣∣∣∣ ~ω = ~ω0
q = q0
~T = ~T0

[
~ω
q

]
+

[
∂f1..7(~ω,q, ~T)

∂ ~T

]∣∣∣ ~ω = ~ω0
q = q0
~T = ~T0

~T

(5)
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Figure 2: Linearised model obtained by straight symbolic derivation



3 Deterministic Attitude Estimation

Two classes of attitude determination algorithms will be considered : de-
terministic and recursive ones. The �rst only accounts for the present infor-
mation handled by the sensors. On this section there will be a brief overview
of the TRIAD algorithm and of Wahba's problem.

3.1 Introduction

The di�erent satellite's sensor's collect informations on the physical envi-
ronment. However, they only measure a physical magnitude that depends
on the attitude. For the SwissCube, the magnetometers and the sun sen-
sors collect data on the magnetic �eld components in the satellite's reference
frame and the sun direction respectively. On-board, models compute both
magnitudes in the ORF. These vector pairs are used by deterministic atti-
tude estimation algorithms to produce an expression of the attitude in the
form of a Direction Cosine Matrix or normed quaternion.

One of the simplest algorithms for attitude estimation, when given two
pairs of measurements vector, is the TRIAD algorithm. More algorithm's
are derived from the solutions to a least square problem such as the one
proposed by Wahba [17].

3.2 TRIAD Algorithm

The TRIAD algorithm is by far the oldest and simplest algorithm used for
attitude determination. It consists in constructing two orthonormal bases
using two pairs of vector measurements : two in the orbital reference frame,
noted r1 and r2, and two in the body reference frame, noted b1 and b2. bi

and ri represent the same magnitude expressed in a di�erent referential. It
is assumed that the �rst vector measurements (r1 and b1) are more accurate.

The following equations are used to build [t1b t2b t3b], the basis at-
tached to the body referential and [t1r t2r t3r] the basis attached to the
orbital referential.

t1b = b1
|b1| t1r = r1

|r1|

t2b = b1×b2
|b1×b2| t2r = r1×r2

|r1×r2|

t3b = t1b × t2b t3r = t1r × t2r

(6)
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It is well known that the relation between the vectors in the canonical base
and an arbitrary base is the following

tib = Rbei

rir = Rrei

(7)

where Rb and Rr are

Rb = [t1b t2b t3b]

Rr = [t1r t2r t3r]
(8)

By taking the inverse basis change and by using the fact that Rb and Rr are
orthonormal

ei = RT
b tib

ei = RT
r tir

(9)

which yields

RT
b bi = RT

r ri ⇐⇒ bi = RbR
T
r ri. (10)

Therefore the attitude matrix is obtained through the multiplication of
both base change matrices

D = [t1b t2b t3b] [t1r t2r t3r]
T . (11)

3.3 Wahba's Problem

Wahba's problem consists in �nding a least squares estimate of the ro-
tation matrix R, which carries the known orbital reference france into the
body reference frame [17]. Given two sets of n vectors {b1, b2, · · · , bn} and
{r1, r2, · · · , rn}, where n > 2, by minimizing the loss function L(R)

L(R) =
1

2

n∑
i=1

ai |bi −Rri| , (12)

subject to the constraints that R be orthogonal and that det(R) = 1. The
nonnegative weights ai are used for weighting the vector pairs. Wahba's loss
function can also be written as
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b1

b2

r1

r2

Figure 3: The TRIAD algorithm receives two vector pairs and build two
orthonormal bases. [t1b t2b t3b] are represented in black and [t1r t2r t3r]
in green

L(R) =
∑n

i=1 ai − tr(RBT )

B =
∑n

i=1 aibir
T
i

. (13)

(13) can be minimized by maximizing tr(RBT ) according to [4]. Note
that in the present formulation, Wahba's problem is a single-frame attitude
determination problem; it assumes that the vector measurements have been
obtained for a constant attitude. The estimate takes place on a single time
point and excludes the dynamics.

3.3.1 Davenport's q-method

In 1968, Davenport devised a method for computing the optimal quater-
nion q corresponding to the best least squares estimate of the rotation matrix
R. The method may be summarized as follows. Given two sets of simultane-
ous vector observations {b1, b2, · · · , bn}, {r1, r2, · · · , rn} and the correspond-
ing weights ai construct the 4× 4 matrix K

K ≡

 B + BT − I3×3tr(B) z

z tr(B)

 z =

 B23 −B32

B31 −B13

B12 −B21

 (14)

B is de�ned in (13). According to [10] the eigenvector of K with the largest
eigenvalue will in this way give the optimal quaternion representing the ro-
tation
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Kqopt = λmaxqopt (15)

The key part of the algorithm consists in determining the eigenvector cor-
responding to the eigenvalue λmax.

3.3.2 Optimal Two Observation Quaternion Estimation

According to [9], the Optimal Two Observation Quaternion Estimation
Method has lower computational requirements and equivalent accuracy com-
pared to the q-method. It uses three vector pairs for the determination of the
attitude as a quaternion; the measurement vectors in the satellite referential
frame, the model vectors in the orbital referential frame and two orthonormal
vectors generated from the previous pairs as follows

rn =
r1 × r2

|r1 × r2|
bn =

b1 × b2

|b1 × b2|
(16)

The transformation between the ORF to the SRF should include a rotation
around rn of an angle φr, followed by a rotation around bn of an angle φb.
φ is de�ned as the composition of φr and φb, which minimizes the following
loss function

L(R) = a1 + a2 −
α cos(φ) + β sin(φ)

1 + bn · rn

(17)

where α and β are given by

α = (1 + bn · rn)(a1b1 · r1 + a2b2 · r2) + (bn × rn)(a1b1 × r1 + a2b2 × r2)

β = (bn + rn)(a1b1 × r1 + a2b2 × r2)
(18)

The optimal rotation quaternion qopt is expressed as follows

qopt =


1

2
√

γ(γ+α)(1+bn·rn)

[
(γ + α)(bn × rn) + β(bn + rn)

(γ + α)(1 + bn · rn)

]
for α ≥ 0

1

2
√

γ(γ−α)(1+bn·rn)

[
β(bn × rn) + (γ − α)(bn + rn)

β(1 + bn · rn)

]
for α < 0

(19)
with γ =

√
α2 + β2 . The two weighting factors a1 and a2 are determined a

priori based on the inverse variances of the random measurement errors.



4 Kalman Filter

In the previous section, Wahba's problem for the attitude estimation and
various solutions were introduced. However, deterministic algorithms are
often only used as a backup solution in the ADCS. Recursive estimators are
often more convenient since they do not require storage of past data and allow
real-time processing of new incoming observations. Recursive algorithms can
be classi�ed in two families: Kalman �lter based attitude and estimators
recursive quaternion estimators derived from the q-method. The �rst family
will be introduced in this section, the second will be treated in a forthcoming
section.

The Kalman �lter is a set of equations that addresses the general problem
of estimation. It is a very powerful tool that supports estimation of the past,
present and future states of a system corrupted by a stochastic noise. This
introduction includes a description of the basic discrete Kalman �lter, used
in linear systems, and its extension to the nonlinear �eld.

4.1 Basic discrete Kalman �lter

4.1.1 Introduction

The following section about the Kalman Filter is based on [18].

Kalman �lters are based on linear dynamical systems discretised in the
time domain. The state of the system is represented as a vector of real
numbers. At each time update, a linear operator is applied to the state,
generating the new state with some noise added. Some information on the
perturbations and the controls applied to the system can be added. The
application of a second linear operator with noise generates the visible states
of the system.

4.1.2 Hypotheses

Assuming the process to estimate can be modeled by the linear stochastic
di�erence equation :

xk = Axk−1 + Buk + wk xk, xk−1 ∈ <n uk ∈ <l (20)

xk is the state of the system, generally hidden, related to the previous
state xk−1 by A and the input uk by B. With the measurements zk
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zk = Hxk + vk zk ∈ <m (21)

wk and vk represent respectively the model noise and the measurements
noise. It may be assumed that they are uncorrelated white gaussian noises
with the probability distributions

p(w) ∼ N(0, Q)
p(v) ∼ N(0, R)

Q and R are the model noise covariance and the process noise covariance.
In practice A, B, H, Q and R can change at each time step; however, the case
where they are constant will be considered for simplicity of development.

We de�ne x̂−
k as the a priori state estimation, computed from the previous

state estimation x̂k−1. The a posteriori state estimation x̂k corrected based
on the measurement zk. We de�ne the a priori and a posteriori estimate
errors

e−k ≡ xk − x̂−
k

ek ≡ xk − x̂k

(22)

and their covariance

P−
k ≡ E

[
e−k e−T

k

]
Pk ≡ E

[
eke

T
k

] (23)

4.1.3 Time Update and Measurement Update Equations

The Kalman �lter estimates a process by using a form of feedback control:
the �lter estimates the process state at some time and collects feedback in the
form of measurements. As such, the equations for the Kalman �lter fall into
two groups : time update equations and measurements update equations.
The �gure 4 represents the cycle a Kalman �lter follows.

The a priori state estimate and covariance is obtained by the time update
equations

x̂−
k = Ax̂k−1 + Buk

P−
k = APk−1A

T + Q
(24)
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Figure 4: Kalman �lter cycle

Equations (24) project forward in the future the state of the system and
the covariance. The a posteriori state estimate and covariance is provided
by the measurements update equations

Kk = P−
k HT

(
HP−

k HT + R
)−1

x̂k = x̂−
k + Kk

(
zk −Hx̂−

k

)
Pk = (I −KH) P−

k

(25)

The �rst task during the measurement update is to compute the Kalman
gain, Kk . The next step is to actually measure the process to obtain zk,
and then to generate an a posteriori state estimate by incorporating the
measurement. The �nal step is to obtain an a posteriori error covariance
estimate Pk.
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4.2 Extended Kalman Filter

4.2.1 Hypotheses

The basic Kalman �lter is restricted to a linear assumption and it is a
limiting constraint in reality. Most non trivial processes are nonlinear, either
because of the process itself or because of the measurements. The Extended
Kalman Filter is introduced to linearize about the current mean and covari-
ance. Assuming that the internal state of the process can be represented
by the state vector xk ∈ <n, but it is governed by the nonlinear stochastic
equations

xk = f(xk−1, uk, wk) (26)

With the measurements zk

zk = h(xk, vk) (27)

where the random variables wk and vk again represent the process and mea-
surement noises as in (20) and (21). In this case, the nonlinear function f
relates the actual state xk with its past state xk−1 and the control applied
uk. The nonlinear function h models the relation between the measurements
zk and the state of the process xk.

In practice, wk and vk cannot be determined, but it is possible to approx-
imate the state and measurement vectors with

x̃k = f(x̂k−1, uk, 0)

z̃k = h(x̃k, 0)
(28)

x̂k−1 is some a posteriori estimate of the state (from a previous time step
k). To estimate a process with nonlinear di�erence and measurement re-
lationships, it necessary to write new governing equations that linearize an
estimate about (28)

xk ≈ x̃k + A(xk−1 − x̂k−1) + Wwk

zk ≈ z̃k + H(xk − x̃k) + V vk

(29)

where

xk, zk : actual state and measurements vector

x̃k, z̃k : approximate state and measurements given by equations (28)
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x̂k : estimate of the state at step k

wk, vk : process and measurement noise at step k

A : Jacobian matrix of partial derivatives of f with respect to x

A[i,j] =
∂fi

∂xj

∣∣∣∣
x̂k,uk,w=0

W : Jacobian matrix of partial derivatives of f with respect to w,

W[i,j] =
∂fi

∂wj

∣∣∣∣
x̂k,uk,w=0

H : Jacobian matrix of partial derivatives of h with respect to x,

H[i,j] =
∂hi

∂xj

∣∣∣∣
x̃k,v=0

V : Jacobian matrix of partial derivatives of h with respect to v,

V[i,j] =
∂hi

∂vj

∣∣∣∣
x̃k,v=0

By de�ning a new notation for the prediction error and the measurement
residual

ẽxk
≡ xk − x̃k

ẽzk
≡ zk − z̃k

(30)

4.2.2 Time Update and Measurement Update Equations

In practice, ẽxk
is not measurable because it relies on the knowledge of xk

which is normally hidden within the process. However, through the measures
zk, the quantity ẽzk

can be quanti�ed. By combining (29) and (30) the
equations governing the error process are obtained

ẽxk
≈ A(xk−1 − x̂k−1) + εk

ẽzk
≈ Hẽxk

+ ηk

(31)
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where εk and ηk represent new independent random variables having zero
mean and covariance matrices WQW T and V RV T , with Q and R as in
4.1.2.

p(εk) ∼ N(0, WQW T )

p(ηk) ∼ N(0, V RV T )

Equations (31) are linear and similar to the initial formulation for the
basic discrete Kalman �lter (20) and (21). Therefore, to estimate the non-
linear process, a second Kalman �lter is set to estimate the prediction error
ẽxk

as a hidden state. This estimate is called êk, which coupled with the
�rst equation of (30), provides the a posteriori state estimate of the original
process

x̂k = x̃k + êk (32)

and the distribution of the prediction error is normal with variance equal to
E[ẽxk

ẽT
xk

]

p(ẽxk
) ∼ N(0, E[ẽxk

ẽT
xk

])

By supposing the predicted value of êk equal, the Kalman �lter provides
the value of êk based on the error of estimation of the measures ẽzk

êk = Kkẽzk
(33)

by replacing (33) in (32) and using (30), it is to be seen that the second
(hypothetical) Kalman �lter is not necessary

x̂k = x̃k + Kkẽzk

= x̃k + Kk(zk − z̃k)
(34)

We are now able to rewrite the basic discrete Kalman �lter time update
(28) and measurement update equations (29) to account for the modi�ed
estimation process. The time update equations of the EKF are

x̂−
k = f(x̂k−1, uk, 0)

P−
k = AkPk−1A

T
k + WkQW T

k

(35)
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and the measurement update equations

Kk = P−
k HT

k

(
HkP

−
k HT

k + VkRV T
k

)−1

x̂k = x̂−
k + Kk

(
zk − h(x̂−

k , 0)
)

Pk = (I −KkHk) P−
k

(36)

An important feature of the EKF is that the Jacobian Hk in the equation
for the Kalman gain Kk serves to correctly propagate or �magnify� only the
relevant component of the measurement information. It may be noted that
both versions of the �lter have a similar implementation. They follow the
prediction-correction cycle illustrated in �gure 4.
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4.3 Attitude determination using the Kalman Filter

There are several approaches to determine the attitude of an autonomous
vehicle. The simplest way is to create a Kalman �lter based on the system
dynamics. This approach was adopted in the nCube design [11] and [15].
However, the solution requires to calculate online the nonlinear functions
that give the state estimates. A second approach exposed in [2] proposes
to estimate the direction cosine matrix , which is the transformation matrix
between some reference coordinate system and the system whose attitude is
to be determined.

The measurements are given in two cartesian coordinate systems. System v
is attached to the vehicle and system u is bound to the reference coordinate
system. The measurements in the system u and v result in sequences of
vectors1 {uk}k=1...n and {vk}k=1...n respectively. The aim is to compute q̂,
the minimum variance estimate of q, where q is the quaternion representing
the rotation between u and v.

The relation between u and v can be described by the direction cosine
matrix (DCM). The DCM can be expressed in terms of the quaternion of
rotation q through a nonlinear relation. A �lter similar to the extended
Kalman �lter (EKF) is used to estimate the di�erence between the actual
quaternion and its estimate. Each newly updated estimate of this di�er-
ence will be added to the quaternion estimate to form the newly updated
(or current) whole quaternion estimate. As a �rst step in the algorithm
development, the linear relations between δq, uk, and vk are derived, where
δq is the di�erence between q and its estimate q̂, .

The DCM2 expression in terms of the quaternion q = [q0 q1 q2 q3]
T is

D(q) =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 − q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (37)

1ui and vi ∈ <3

2D(q) is noted in section 2 as R(q). However, in the current section R stands for the

measurements noise covariance.
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Supposing that q and D(q) are known, a �rst-order Taylor series expansion
may be used to compute D(q + δq)

D(q + δq) ∼ D(q) +
3∑

j=0

∂D

∂qj

∣∣∣∣
q

δqj (38)

Note that

Aj(q) =
∂D

∂qj

∣∣∣∣
q

, j = 0, 1, 2, 3

with

A0(q) = 2

 q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 A1(q) = 2

 q1 q2 q3

q2 −q1 q0

q3 −q0 −q1



A2(q) = 2

 −q2 q1 −q0

q1 q2 q3

q0 q3 −q2

 A3(q) = 2

 −q3 q0 q1

−q0 −q3 q2

q1 q2 q3


(39)

Supposing q̂−
k the estimate of q at step k is known and a new pair of

measurements uk and vk is obtained. The new error free measurements satisfy
the relation

v0,k = D(qk)u0,k (40)

The measurements of the vectors u0,k and v0,k are corrupted by the noises
nu,k and nv,k. It may be assumed that both noises are white and Gaussian.
Their covariance matrices are denoted Ru and Rv. The relation between
noise free measurements and real measurements is

uk = u0,k + nu,k

vk = v0,k + nv,k
(41)

and qk may be expressed as

qk = q̂−
k + δqk (42)

Substitution of (41) and (42) into (40) yields

vk = D(q̂−
k + δqk)(uk − nu,k) + nv,k (43)
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By using (38) to rewrite (43) as

vk −D(q̂−
k )uk =

[∑3
j=0 Aj(q̂

−
k )δqk,j

]
uk

−
[∑3

j=0 Aj(q̂
−
k )δqk,j

]
nu,k

−D(q̂−
k )nu,k + nv,k

(44)

The second term on the right-hand side of (44) is a second-order term which
can be omitted, while �rst term on the right side may be written as[

3∑
j=0

Aj(q̂
−
k )δqk,j

]
uk = H−

k (q̂−
k , uk)δqk (45)

with

H−
k = [h1 h2 h3 h4]

hj = Aj(q̂
−
k )uk

A new noise variable nk is introduced

nk ≡ nv,k −D(q̂−
k )nu,k (46)

and the estimate of the DCM

D̂k ≡ D(q̂k)

nk is a zero mean white noise whose covariance matrix R is given by

Rk ≡ Cov{nk}
= Rv,k + D−

k Ru,kD
−T
k

(47)

By de�ning êk as follows

êk ≡ vk − D̂kvk (48)

by using (45), (46) and (48), (44) may be rewritten as

êk = H−
k δqk + nk (49)

Equation (49) is a linear relationship between the data vector êk and the
unknown vector δqk which is the di�erence between the quaternion of rota-
tion and its estimate. It may be noted that ek, H−

k and nk depend on the
current estimate of the quaternion, a feature of the EKF.
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If the coordinate system v rotates with respect to u, then the change of
the quaternion q must be taken in account. It is well known that the rate of
change q̇ is related to q by the following relation

q̇ = Ωq (50)

where

Ω =
1

2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 (51)

Ω elements are the components of the vector ~ω′ = [ωx ωy ωz]
T . The true

quaternion propagates according to (50), however the estimated quaternion
propagates according to

˙̂q = Ω̃q̂ (52)

where the matrix Ω̃ has the same expression as Ω except that its entries
are ~̃ω = [ω̃x ω̃y ω̃z]

T , the measured angular rates in the body referential.
Since a noise contaminates our measurements

~̃ω = ~ω + nω (53)

nω is the noise vector for the angular rate. (50) may be expressed to account
for the noise (53), as follows

q̇ = (Ω̃ + δΩ)q (54)

where δΩ is similar to (51), with nω as its elements. Using the second relation
of (1), (54) may also be noted as

q̇ = Ω̃q− 1

2
GT nω (55)

Where

GT =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


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By substracting (52) to (55), the following dynamics equation is obtained for
δq̇

δq̇ = Ω̃δq + Lnω (56)

With L = −1
2
GT . When (56) is discretized, the following di�erence equa-

tion is obtained for the propagation of δq

δqk = φk−1δqk−1 + Lk−1nω,k−1 (57)

Note that φk−1 is a function of the measured angular rate vector ~̃ω and Lk−1

is a function of qk−1. Since qk−1 itself is not known its estimate q̂k−1 is used
to compute Lk−1. The latter is a well known characteristic of the EKF.

Following (57), δq̂ is propagated between measurements according to

δq̂k = φk−1δq̂k−1 (58)

Equations (49) and (58) may be used to create an extended Kalman �lter.
êk is the innovation term and δq̂k is the a priori estimation error. Therefore,
the estimation error covariance matrix is propagated according to

P−
k = φk−1Pk−1φ

T
k−1 + Lk−1Qk−1L

T
k−1 (59)

where Qk−1 = Cov{nω,k−1}. From this point, it will be assumed that nω,k−1

is a static noise. Moreover, (52) yields the following relation

q̂−
k = φk−1q̂k−1 (60)

Equations (58)-(60) will be used to establish the time update equations
and measurements update equations of the EKF. This leads to the following
algorithm summarized in table 1
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Time update Measurements update

q̂−
k = φk−1q̂k−1 Kk = P−

k HT
k

(
HkP

−
k HT

k + Rk

)−1

δq̂k = Kkêk

P−
k = φk−1Pk−1φ

T
k−1 + Lk−1Qk−1L

T
k−1

q̂k = q̂−
k + δq̂k

Pk = (I −KkHk) P−
k ×

(I −KkHk) + KkRkK
T
k

Table 1: Modi�ed extended Kalman �lter for attitude estimation



5 Recursive Quaternion Estimators

5.1 REQUEST algorithm

Davenport's q-method is an algorithm determination and relies on the
spectral decomposition of K for a single-frame attitude as de�ned in (14).
As seen in a previous section, several solutions have been devised to com-
pute e�ectively the eigenvalues and the corresponding optimal quaternion .
However, the solutions to Wahba's problem require at least two sets of vec-
tor measurements, to be implementable. It is a limiting constraint for real
systems as some of the sensors may become unavailable for short periods
of time (e.g. the sun sensors). The REQUEST algorithm [3] constructs K
recursively from a single pair of vector measurements.

It is well known that the body angular motion can be described in terms
of the attitude quaternion by the di�erential equation

q̇ =
1

2
Ωq (61)

where Ω is a 4 × 4 skew symmetric matrix and is a function of the angular
velocity of the body with respect to the reference frame, given in the body
frame and denoted by ~ω′. Ω is de�ned as follows

Ω =

[
−[~ω′×] ~ω′

~ω′T 0

]
(62)

The solution of (61) in discrete time3 is

qk+1 = φkqk (63)

Based on equation (63) an optimal attitude prediction step is devised in
terms of the matrix K. Ki/j denotes the matrix representing the attitude
at time ti and constructed from the measurements up to tj. Its propagation
from tk to tk+1 is formulated as

Kk+1/k = φkKk/kφ
T
k (64)

Assuming that a single pair of vector measurements {bk+1 rk+1} is acquired
at tk+1, the corresponding matrix Kk+1/k+1 may be computed. First, de�ne

3The matrix φk can only be estimated through a �rst order approximation for a given

~ω′
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Bk+1 ≡ bk+1r
T
k+1 Sk+1 ≡ Bk+1 + BT

k+1

zk+1 ≡ bk+1 × rk+1 σk+1 ≡ tr(Bk+1)
(65)

then, calculate δKk+1 as

δKk+1 =

[
Sk+1 − σk+1I zk+1

zT
k+1 σk+1

]
(66)

Denoting by ai the scalar weighting coe�cient of the ith observation, the
following scalars are recursively computed

m0 = 0 mk+1 = mk + ak+1 (67)

and �nally update Kk+1/k

Kk+1/k+1 = ρk+1
mk

mk+1

Kk+1/k +
ak+1

mk+1

δKk+1 (68)

The coe�cients mk are used to normalize the weights ai, to maintain
the largest eigenvalue of Kk+1/k+1 close to 1. If the matrix φk is error-free
(perfect speed measurements), the coe�cient ρ is set equal to 1. If noisy speed
measurements are used for the propagation calculations, ρ is set between 0
and 1 for �ltering purposes. It is plain to see that the choice of ρ is heuristic,
making the �lter suboptimal.

5.2 Optimal REQUEST

In the REQUEST update stage, the choice of the fading memory factor
ρk+1 is heuristic. Moreover, its determination is only based on the noise
present in the propagation stage (speed measurement noise) and has no di-
rect relation with the measurement noise. The REQUEST algorithm can
be updated by computing an optimal ρk+1 in the update stage. This value
accounts for the various noises present in the measurements to improve ac-
curacy in the estimation of the K matrix.

5.2.1 Prediction stage

It is required for Kk+1/k to be linear in Kk/k and to produce an unbiased
estimate. These requirements yield the prediction formula of the REQUEST
algorithm

Kk+1/k = φkKk/kφ
T
k (69)
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Using the process equations for the K matrix 96, the prediction equation
(69) and the de�nitions of the prediction errors 95, the error propagation
equation is obtained

∆Kk+1/k = φk∆Kk/kφ
T
k + Wk (70)

Knowing the propagation of the error, the error covariance propagation
can be computed using

Pk+1/k = φkPk/kφ
T
k + Qk (71)

Where Qk is given in equation (107).

5.2.2 Measurement update stage

The update stage for the Optimal REQUEST is a slightly modi�ed version
of the update stage for the original REQUEST algorithm. The updated esti-
mate Kk+1/k+1 in (68) is reshaped as a convex combination of the prediction
estimate Kk+1/k and the new observation δKk+1

Kk+1/k+1 = (1− ρk+1)
mk

mk+1

Kk+1/k + ρk+1
δmk+1

mk+1

δKk+1 (72)

where δmk+1 is a scalar weight and mk+1 is computed recursively using

mk+1 = (1− ρk+1)mk + ρk+1δmk+1 (73)

The error covariance propagation is derived in Annex B

Pk+1/k+1 =

(
(1− ρk+1)

mk

mk+1

)2

Pk+1/k +

(
ρk+1

δmk+1

mk+1

)2

Rk+1 (74)

5.2.3 Optimal Gain

For each new processed observation, the estimation uncertainty should
decrease considerably. According to [3], a cost function may be de�ned on
the basis of the expectation of the error propagation equation

Lk+1(ρk+1) ≡ tr
(
E

[
∆Kk+1/k+1∆KT

k+1/k+1

])
= tr

(
Pk+1/k+1

)
(75)

The design problem for the �lter gain ρk+1 reduces to solving the following
minimization problem with respect to ρk+1
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min
{
Lk+1 = tr

(
Pk+1/k+1

)}
(76)

Inserting (74) into the expression for Lk+1 yields

Lk+1(ρk+1) =

(
(1− ρk+1)

mk

mk+1

)2

tr
(
Pk+1/k

)
+

(
ρk+1

δmk+1

mk+1

)2

tr (Rk+1)

(77)
A necessary condition for an extremum is

dLk+1

dρk+1
= 2

[(
mk

mk+1

)2

tr
(
Pk+1/k

)
+

(
δmk+1

mk+1

)2

tr (Rk+1)

]
ρk+1

− 2
(

mk

mk+1

)2

tr
(
Pk+1/k

)
= 0

(78)

yielding the condition for ρ∗k+1 to be a minimum

ρ∗k+1 =
m2

ktr
(
Pk+1/k

)
m2

ktr
(
Pk+1/k

)
+ δm2

k+1tr (Rk+1)
(79)

Note that ρ∗k+1 as computed from (79) lies in the interval [0, 1] for any
mk 6= 0 and δmk 6= 0. It may be seen that the gain depends directly on the
actual state estimation error covariance and indirectly on the measurement
noise covariance through the modi�ed noise matrix Rk+1. For a condition of
low uncertainty in the measurements with respect to a high uncertainty in the
a priory estimate, the gain stays close to 1 and the algorithm remains active.
In the opposite condition, the gain tends towards 0 and small corrections
only are introduced to the a priori estimate.



6 Simulation Study

6.1 Introduction

The aim of this section is to present the results obtained for the di�erent
estimation algorithms exposed previously. The deterministic algorithms are
not treated. The tests could not be carried out as the models of the sun
sensor's are not yet available. The Kalman Filter in its continuous version
is used as a reference for the di�erent recursive algorithms as it provides the
best performances for the system. However, it is not usable on the ADCS
controller due to limiting constraints in computational power.

6.2 Continuous EKF

6.2.1 Computational model

A continuous version of the EKF was built based on the equations (1) and
(5). In practice, its implementation on the SwissCube satellite is impossible
due to the large requirements in terms of computational power. For correct
operation, the �lter requires a numerical ordinary di�erential equation (ODE)
solver to be implemented, working with su�ciently small integration step.
However, it was designed to serve as a reference in terms of convergence
time and tracking capabilities. The continuous Kalman Filter equations are
found in [6]. A SIMULINK model was programmed in S-Function language
to simulate the behaviour of the �lter with di�erent noise levels. Figure 5 is
an overall picture of the model.

Three parameters in�uence the behaviour of the continuous Kalman Fil-
ter: the integration step used in the ODE solver, the modelling of the noise
through R and Q, the operating conditions (noise levels and angular speed)
and the initial conditions. To examine the performances of the �lter devel-
opped, simulations were carried out with di�erent parameter sets and noise
conditions.
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6.2.2 Analysis of some results

For the purpose of comparing q̂ with the true quaternion, two types of es-
timation errors commonly used in quaternion estimators [3] were considered.
The �rst is the multiplicative estimation error, denoted here by δq and is
de�ned as δq = q∗ ⊗ q̂. The unit vector δq is itself a quaternion of rotation
that represents the small rotation which brings the axis of the estimated body
frame onto those of the true body frame. From the scalar component of δq,
denoted by δq, the value of the rotation angle δφ is extracted through the
relation δφ = 2arccos(δq). The second type of estimation error is the norm of
the additive estimation error, ‖ ∆q ‖, which is de�ned as ‖ ∆q ‖=‖ q− q̂ ‖.

In the simulations conducted, the body referential rotation speed, was cho-
sen as a variable. The speed and attitude measurement noises were Gaussian
zero-mean white noises with a standard deviation of 3.2 × 10−3 deg/s and
1 × 10−2 respectively. The speed and attitude model noises were Gaussian
zero-mean white noises with a standard deviation of 1 × 10−3 deg/s and
1×10−4 respectively. Each simulated time span was 10 sec. Figure 6 depicts
the multiplicative and additive estimation errors . The convergence time for
the Kalman Filter is in average inferior to 1 × 10−3 s for the Continuous
Extended Kalman Filter.

Figure 6: Multiplicative and Additive Estimation Errors for 5 deg/s
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The results in table 2 illustrate the �lter's errors in the operational range of
speeds of the system. The additive and the multiplicative errors remain low
despite the noisy inputs and no signi�cant increase is observed at high speeds.
The values obtained will be used as a reference for the other estimators
proposed in this work.

µ σ
Speed [deg/s] Multiplicative [◦] Additive [ ] Multiplicative [◦] Additive [ ]

5 1.89 2.45× 10−3 4.44 3.41× 10−2

2 1.53 1.99× 10−3 3.54 3.08× 10−2

1 1.44 1.34× 10−3 2.63 2.98× 10−2

0.5 1.76 1.24× 10−3 2.98 2.08× 10−2

0.1 1.44 1.46× 10−3 4.96 3.41× 10−2

Table 2: Statistical characteristics of the two criteria of estimation error for
di�erent speeds

6.2.3 Separation principle

For linear time invariant systems, the controller and the estimator may be
designed separately under some assumptions. But the system is non-linear,
which implies that compatibility tests are to be conducted with the controller
designed in a previous project [5]. The controller is a PD which uses Earth's
magnetic �eld and the magnetotorquers to generate a torque. The control
law used is

~C = −kv~ω
′ − kp~q (80)

Where ~ω′ is the angular speed expressed in the body reference frame. ~q is
the imaginary part of the attitude quaternion. kv and kp are respectively
the derivative and the proportionnal terms. In order to reduce unnecessary
energy consumption, the magnetic �eld generated by the magnetotorquers
is chosen perpendicular to the local Earth magnetic �eld, which yields the
following expression

~M ′ =
~B′

~B′T ~B′
× (−kv~ω

′ − kp~q) (81)

The simulation conditions to test the compatibility of the controller were the
same as those used in the point 6.2.2. The derivative and the proportional
terms chosen were 10−5 N.s

rad
and 10−8 N.m, respectively. The �gure 7 illus-

trates the results obtained in simulation with a starting speed of 0.1 deg/s .

Falcon
Highlight

Falcon
Highlight



6 SIMULATION STUDY 35

Some �Burst-out� problems occured with the Kalman Filter when the system
reached a steady state. In the �nal version of the �lter, a reinitialisation was
introduced every hour of simulated time to avoid those problems. The e�ects
can be seen in the error norm graphic, where spikes appear every hour due to
the �lter modi�cation. It should be noted that the local Earth magnetic �eld
supplied to the controller is constant and therefore does not re�ect reality.

Figure 7: Simulation of the Continuous EKF combined with the controller.
The top �gures show the attitude and the speed. The bottom �gure illus-
trates the additive estimation error norm.
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6.3 Modi�ed Discrete EKF

6.3.1 Computational model

For the modi�ed EKF, the sensors as well as an orbit propagator and the
earth magnetic �eld model were incorporated in the SIMULINK model. The
sensors were modelled as a moving average coupled with a quantization and a
saturation as developped in [8] and [13] (see Figure 8). While representing a
rather good approximation of reality, it introduces additional non-linearities
in the overall system. The Earth magnetic �eld is given by the look-up ta-
bles calculated during semester project [12]. It is a simpli�ed model of the
WMM-2005 (World Magnetic Model, a model used by international organi-
sations) where the three components of the magnetic �eld are calculated in
various points of a grid with a step of 5◦ in latitude and longitude. The
overall precision of this approach is 200 nT , which is less than the theoretical
precision of 1 µT achievable by the magnetometers. The orbit propagator
chosen in [7] was included through the S-Function language of SIMULINK.
An overall view is available in Figure 9

Figure 8: SIMULINK model for the sensors
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6.3.2 Analysis of some results

If the sensor models are not included for the simulation of the system, the
Modi�ed Discrete EKF displays good characteristics. However, the addition
of sensors makes the system unstable and makes it consequently unusable.
This behaviour can be explained through the great sensitivity that the �lter
displays to the measurement noise. The quantization noise added by the
introduction of the sensors is enough to destroy the �lter stability as shown
in �gure 10. Even though stability for short periods of time can be achieved
through tuning of the di�erent �lter parameters, unpredictable behaviours
appear on the long term.

Figure 10: Simulation of the Modi�ed Discrete EKF
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6.4 Optimal REQUEST

6.4.1 Computational model

The setup used in the tests of the Optimal REQUEST algorithm is iden-
tical to the one used for the Modi�ed Kalman Filter.

6.4.2 Analysis of some results

In the simulations conducted, the body coordinate system rotation speed,
was chosen as a variable. The speed and magnetic measurement noises were
Gaussian zero-mean white noises with a standard deviation of 3.2 × 10−4

m/s and 1000 nT , respectively. The speed and attitude model noises were
Gaussian zero-mean white noises with a standard deviation of 1× 10−4 m/s
and 1 × 10−4 1000 nT , respectively. Each simulated time span was 5000
seconds. Figure 11 depicts the multiplicative and additive estimation errors.
The convergence time for the Optimal REQUEST algorithm is on average
less than 100 s.

The tables 3 and 4 show the behaviour of the estimation error with dif-
ferent simulated speeds and sampling times for the Optimal REQUEST. In
order to achieve acceptable levels of estimation error, several simulations were
repeated with various values of the noise parameters of the �lter ηnoise and
µnoise. It can be seen that the sampling time ts has a great in�uence on the
estimation precision. No good results were obtained with sampling times ex-
ceding 1s. The smallest sampling the time system can perform by is 0.5s the
achievable precision is limited. The behaviour of the �lter worsens in high
speeds but the errors mean value remains within the tolerances stipulated by
the application [7].

µ σ
Speed [deg/s] Multiplicative [◦] Additive [ ] Multiplicative [◦] Additive [ ]

5 331.98 0.22 8.21 3.91× 10−2

2 11.49 9.03× 10−2 16.07 3.67× 10−2

1 6.73 4.95× 10−2 17.73 4.33× 10−2

0.5 4.63 3.83× 10−2 7.75 2.87× 10−2

0.1 4.37 6.24× 10−2 8.53 4.44× 10−2

Table 3: Statistical characteristics of the two criteria of estimation error for
di�erent speeds. The sampling time is ts = 0.5 s. Noise parameters are
µnoise = 3.81× 104 and ηnoise = 1.82× 10−9
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µ σ
Speed [deg/s] Multiplicative [◦] Additive [ ] Multiplicative [◦] Additive [ ]

5 236.2 0.72 13.42 0.23
2 54.29 0.4 10.85 0.11
1 23.28 0.18 13.07 9.78× 10−2

0.5 13.83 0.11 9.58 7.76× 10−2

0.1 14.95 0.12 11.17 6.7× 10−2

Table 4: Statistical characteristics of the two criteria of estimation error
for di�erent speeds. The sampling time is ts = 1 s. Noise parameters are
µnoise = 3.81× 104 and ηnoise = 1.82× 10−9

Figure 11: Multiplicative and additive estimation errors for 0.5 deg/s and
ts = 0.5 s with µnoise = 3.81× 104 and ηnoise = 1.82× 10−9

6.4.3 Separation Principle

The compatibility of the Optimal REQUEST Algorithm with the controller
exposed in 6.2.3 was tested. The simulation conditions were identical to those
used in the section 6.4.2. The derivative and the proportional terms chosen
were 10−5 N.s

rad
and 10−8 N.m, respectively, and the initial angular speed of

the satellite was 0.1 deg/s. It may be seen in �gure 12, that the additive
and multiplicative estimation errors remain within acceptable values. Figure
13 shows that the pair controller-estimator manages to dissipate the energy
present in the system. The spikes in the energy graphic may be due to the
magnetic �eld; this behaviour may be explained by an unfavourable position
of the satellite with respect to the Earth �eld.
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Figure 12: Multiplicative and additive estimation errors for 0.5 deg/s and
ts = 0.5 s with µnoise = 3.81× 104, ηnoise = 1.82× 10−9, kv = 10−5 and kp =
10−8

Figure 13: Energy per mass unit for 0.5 deg/s and ts = 0.5 s with µnoise =
3.81× 104, ηnoise = 1.82× 10−9, kv = 10−5 and kp = 10−8
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Figure 14: Attitude angles for 0.5 deg/s and ts = 0.5s with µnoise = 3.81×104,
ηnoise = 1.82× 10−9, kv = 10−5 and kp = 10−8



7 Conclusion

During this project, di�erent methods to estimate the attitude have been
considered.
The Optimal REQUEST algorithm shows satisfying performances. More-
over, when combined with the previously designed controller it provides suf-
�cient precise information to dissipate the system's kinetic energy. However,
the results were obtained through simulations, which implies that they should
be interpreted cautiously. No tests have been conducted with the algorithm
implemented in the ADCS controller. Several factors could a�ect the be-
haviour of the real system :

- No Floating Point Unit is available in the microcontroller.

- Computational power restrictions may impose a slower sampling rate than
the optimal value found.

- Unmodelled factors may appear, such as the perturbation torques.

The �rst and second potential problems may be avoided with a correct
transcription of the Optimal REQUEST. The third may be addressed by
adding, if possible, an adaptative procedure as suggested in [3].

Finally, I would like to thank everyone the �Laboratoire d'Automatique�,
in particular my supervisors Philippe Müllhaupt for his help and valuable
advice, Levente Bodizs for his explanations on the Kalman �lter and Basile
Graf for his insight on teamwork and help with quaternions.
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A The referentials

The standard referential considered will be the geocentric referential.

A.1 Geocentric referential

Geocentric coordinates are the polar coordinates centered at the center of
the Earth. Points are de�ned by the geocentric longitude, geocentric latitude,
and distance from the planet center. It is to be noted that, given the non-
spherical nature of the Earth, the geocentric latitude does not correpond
exactly with the latitude used on maps.

A.2 Geodetic referential

Geodetic coordinates are represented by longitude, latitude, and elevation
above sea level. These are the coordinates may read on a map or seen on
a GPS receiver. However, as already mentioned, there is equivalence be-
tween the latitudes given in the geocentric and geodetic coordinate systems.
Additional information is available in [16]

A.3 Orbital referential

The orbital referential is used by the attitude determination algorithm of
the satellite. It is �xed to the orbit with the positive x-direction pointing
in the displacement direction and a positive z-direction pointing towards the
center of the Earth. The referential is completed by a y vector generated
in order to have an orthonormal basis. See �gure 15. Further details are
provided in section A.4.2.

A.4 Transformation between referentials

A coordinate transformation is a conversion from one referential to another.
For each reference frame, the transformation matrix transforming cartesian
reference frame towards itself will be presented. The conversion between R
and R′ can be obtained through the cartesian referential. Given xC a vector
in the cartesian frame C and an arbitrary referential frame R

xR = AxC

xC = A−1xR
(82)

Where A and A−1 are the matrices for the direct and inverse transformation,
respectively. Given a third referential R′ so that
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Figure 15: Orbital coordinates

xR′ = BxC

xC = B−1xR′
(83)

B and B−1 are the transformation matrices between C and R′. The trans-
formation between two arbitrary referentials is computed as follows

xR′ = BA−1xR

xR = AB−1xR′
(84)

A.4.1 Cartesian to Geocentric

The relation between the geocentric and the cartesian coordinates can be
expressed as

x = ρ cos φ cos θ
y = ρ cos φ sin θ

z = ρ sin φ
(85)

and the direct transformation matrix is

A =

 cos φ cos θ cos φ sin θ sin φ
− sin θ cos θ 0

sin φ cos θ sin φ sin θ cos φ

 (86)
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Figure 16: Angles in the geocentric reference frame

A.4.2 Cartesian to Orbital Reference Frame

The orbital referential is attached to the orbit of the satellite and therefore
is a curvilinear coordinate system. As illustrated in (17), two normed and
orthogonal vectors are de�ned using the radius and the speed of the satel-
lite. The third component is built with a cross product in order to form an
orthonormal base. The construction is summarized as

~1r = − ~r
|~r|

~1v = ~v
|~v|

~1u = ~1r × ~1v

(87)

Where ~r and ~v are respectively the radius and the speed vectors expressed
in the cartesian referential. The transformation matrix may be de�ned as

A =

 1r,x 1r,y 1r,z

1v,x 1v,y 1v,z

1u,x 1u,y 1u,z

 (88)
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~1r

~1v

Figure 17: De�nition of the orbital referential main vectors



B Mathematical annex

B.1 Optimal REQUEST Measurement Equation

The measurement equation of the Optimal REQUEST K matrix is derived
as follows. Dk+1 denotes the Direction Cosine Matrix at the time tk+1. As-
suming that the reference unit vector rk+1 is known exactly and the vector
observation bk+1 is corrupted by a noise δbk+1 yields

bk+1 = Dk+1rk+1 + δbk+1 (89)

Given Vk+1, a 4× 4 symmetric matrix de�ned as

Vk+1 =
1

ak+1

[
Sb + σbI zb

zT
b σb

]
(90)

Where Sb, σb and zb are

Bb ≡ ak+1δbk+1r
T
k+1 Sk+1 ≡ Bb + BT

b

zb ≡ ak+1δbk+1 × rk+1 σb ≡ tr(Bb)
(91)

Vk+1 is the error in the measurement equation for the REQUEST algorithm

δKk+1 = δK0
k+1 + Vk+1 (92)

δKk+1 is the innovation for the estimation process computed on the basis of
the noisy measurements bk+1 and rk+1 while δK0

k+1 is built with an imaginary
noise free vector. Note that Vk+1 is linear in δbk+1 and rk+1, which implies
that Vk+1 will be random if δbk+1 is random.

B.2 Dynamics of the K Matrix Error

The equation governing matrix K0, computed on the basis of error free
measuremements are

K0
k+1/k = φkK

0
k/kφk

K0
k+1/k+1 = (1− ρk+1)

mk

mk+1
K0

k+1/k + ρk+1
δmk

mk+1
δK0

k+1

(93)

The estimated K matrices are

Kk+1/k = φkKk/kφk

Kk+1/k+1 = (1− ρk+1)
mk

mk+1
Kk+1/k + ρk+1

δmk

mk+1
δKk+1

(94)
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The estimation errors may be de�ned as

∆Kk+1/k ≡ K0
k+1/k −Kk+1/k

∆Kk+1/k+1 ≡ K0
k+1/k+1 −Kk+1/k+1

(95)

Where ∆Kk+1/k and ∆Kk+1/k+1 denote respectively the a priori and the a
posteriori estimation errors of the algorithm. It is assumed that the a priori
estimation error is unbiased, that is E

[
∆Kk+1/k

]
= 0. Substracting (94)

from (93) yields

∆Kk+1/k = φk∆Kk/kφk

∆Kk+1/k+1 = (1− ρk+1)
mk

mk+1
∆Kk+1/k + ρk+1

δmk

mk+1

(
δK0

k+1 − δKk+1

)
(96)

The term δK0
k+1 − δKk+1 may be identi�ed as the measurement error Vk+1

by using (92). Therefore the second equation of (96) is rewritten as

∆Kk+1/k+1 = (1− ρk+1)
mk

mk+1

∆Kk+1/k + ρk+1
δmk

mk+1

Vk+1 (97)

Taking the expectation of both sides, yields

E
[
∆Kk+1/k+1

]
= (1− ρk+1)

mk

mk+1

[
∆Kk+1/k

]
+ ρk+1

δmk

mk+1

[Vk+1] (98)

Under the assumptions that the measurement error Vk+1 and the a priori
estimation error ∆Kk+1/k are zero-mean random variables, the a posteriori
estimation error ∆Kk+1/k+1 has zero mean. The propagation of the covari-
ance is de�ned as

Pk+1/k ≡ E
[
∆Kk+1/k∆KT

k+1/k

]
Pk+1/k+1 ≡ E

[
∆Kk+1/k+1∆KT

k+1/k+1

] (99)

Using (97), Pk+1/k+1 is computed

∆Kk+1/k+1∆KT
k+1/k+1 =

[
(1− ρk+1)

mk

mk+1

]2

∆Kk+1/k∆KT
k+1/k

(1− ρk+1) ρk+1
δmk+1mk

m2
k+1

(
∆Kk+1/kV

T
k+1Vk+1∆KT

k+1/k

)
(
ρk+1

δmk

mk+1

)2

Vk+1V
T
k+1

(100)
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It may be shown that the measurement noise Vk+1 and the a priori estimation
error ∆Kk+1/k are uncorrelated, which implies

E
[
Kk+1/kV

T
k+1

]
= 0

E
[
Vk+1K

T
k+1/k

]
= 0

(101)

Taking the expectation of both sides of (100) and using (101) yields the
expression for Pk+1/k+1

Pk+1/k+1 =
(
(1− ρk+1)

mk

mk+1

)2

E
[
∆Kk+1/k∆KT

k+1/k

]
+

(
ρk+1

δmk

mk+1

)2

E
[
Vk+1V

T
k+1

] (102)

By identifying E
[
∆Kk+1/k∆KT

k+1/k

]
as the a priori estimation error Pk+1/k

and by noting E
[
Vk+1V

T
k+1

]
as the measurement noise covariance, (102) be-

comes

Pk+1/k+1 =

(
(1− ρk+1)

mk

mk+1

)2

Pk+1/k +

(
ρk+1

δmk+1

mk+1

)2

Rk+1 (103)

B.3 Computation of the Matrices Qk and Rk

In the Kalman �lter, the noise matrices Qk and Rk are directly related
to the process noise covariance and the measurement noise covariance, re-
spectively. However, in the Optimal REQUEST the estimate is computed
through the matrix K, which requires the introduction of modi�cations into
the de�nition of the noise matrices. The demonstrations related to the
present section are available in [3]

Stochastic models for the random variables Wk and Vk

To estimate the state of the system accurately, the sensors collect infor-
mation from two sets of physical values: attitude information and angular
speeds. Only basic models will be considered to account for the measurement
errors. The measured values may be described by the following equations

ωk = ω0
k + εk

bk = b0
k + δbk

(104)
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In order to derive the stochastic models for Wk and Vk, the stochastic models
for εk and δbk are required. εk is modelled as a zero-mean white gaussian noise
vector process whose components are identically distributed with variance ηk

E[εk] = 0 E[εkε
T
k+i] = ηkI(3×3)δk,k+i k = 1, 2... (105)

δk,k+i is the Kronecker's delta function. For bk, the noise model given in [3]
has its �rst and second moments equal to

E[δbk] = 0 E[δbkδb
T
k+i] = µk(I3×3 − bkb

T
k+i)δk,k+i k = 1, 2... (106)

Where µk is the variance of the component of bk along a direction normal to
E[δbk]. Furthermore, it is assumed that both processes are mutually uncor-
related.

Qk matrix

Recall that

Qk ≡ E
[
WkW

T
k

]
(107)

The 4× 4 matrix Qk can be partitioned in

Qk =

[
Q11 Q12

Q21 Q22

]
∆t2 (108)

with

Q11 = ηk

{[
ẑT ẑ − tr(B̂B̂T )

]
I3×3 + 2

[
B̂T B̂ − B̂2(B̂T )2

]}
Q12 = −ηk

(
y+ B̂T ẑ

)
Q21 = QT

12

Q22 = ηk

[
tr(B̂B̂T ) + σ̂2 + ẑT ẑ

]
(109)

B̂, ẑ and σ̂ are computed using the estimated values and ηk is de�ned in
(105). y is a 3× 1 vector de�ned as follows

M ≡ B̂(B̂ − σ̂I3×3)
(y×) ≡ M −MT (110)

(y×) stands for the cross product.
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Rk matrix

Recall that

Rk ≡ E
[
VkV

T
k

]
(111)

The 4× 4 matrix Rk can be partitioned in

Rk =

[
R11 R12

R21 R22

]
(112)

with

R11 = µk

[
3− (rT

k )2
]
I3×3 + (rT

k bk)(rkb
T
k + bkr

T
k ) + (rk×)(bkb

T
k )(rk×)T

R12 = 0

R21 = 0

R22 = 2µk

(113)
where rk and bk are the vector measurements taken respectively in the body
reference frame and in the body frame. µk is de�ned in (106).



References

[1] Itzhack Bar-Itzhack. Optimum normalization of a computed quaternion
of rotation. IEEE transactions on aerospace and electronic systems,
March 1971.

[2] Itzhack Bar-Itzhack and Yaakov Oshman. Attitude determination from
vector observations: Quaternion estimation. IEEE transactions on
aerospace and electronic systems, AES-21, Issue: 1, 1985.

[3] Daniel Choukroun. Novel Methods For Attitude Determination Using
Vector Observations. PhD thesis, Israel Institute of Technology, May
2003.

[4] J. L. Farrell, J. C. Stuelpnagel, R. H. Wessner, J. R. Velman, and J. E.
Brook. A least squares estimate of satellite attitude (Grace Wahba).
SIAM Review, 8(3):384�386, 1966.

[5] Basile Graf. Swisscube control algorithm design and validation. Master's
thesis, Ecole Polytechnique Federale de Lausanne, February 2007.

[6] Mohinder S. Grewal and Angus P. Andrews. Kalman Filtering - Theory
and Practice. Information and system science series. Prentice Hall, 1993.

[7] Daniel Håkansson. Mission design. Technical report, Ecole Polytech-
nique Federale de Lausanne - Swisscube Design Team, 2007.

[8] Kaspar Jenni. ADCS gyroscopes. Technical report, Ecole Polytechnique
Federale de Lausanne - Swisscube Design Team, 2007.

[9] Kristian Krogh and Elmo Schreder. Attitude determination for AAU
CubeSat. Technical report, Aalborg University - Department of Control
Engineering, June 2002.

[10] F. L. Markley and D. Mortari. Quaternion attitude estimation using
vector observations., August 1999.

[11] Stian Sondersrod Ose. Attitude determination for the norwegian student
satellite nCube. Master's thesis, Norwegian University of Science and
Technology, June 2004.

[12] Hervé Péter-Contesse. Earth's magnetic �eld model. Technical report,
Ecole Polytechnique Federale de Lausanne - Swisscube Design Team,
2007.



REFERENCES 55

[13] Hervé Péter-Contesse. ADCS hardware and system. Technical report,
Ecole Polytechnique Federale de Lausanne - Swisscube Design Team,
2007.

[14] Andreas Schmocker. ADCS sun-sensors. Technical report, Ecole Poly-
technique Federale de Lausanne - Swisscube Design Team, 2007.

[15] Bernt Ove Sunde. Attitude determination for the student satellite
nCube II: Kalman Filter. Technical report, Norwegian University of
Science and Technology, 2003.

[16] http://en.wikipedia.org/wiki/Geographic_coordinate_system.
Geographic Coordinate System (visited 27/07/2007).

[17] Grace Wahba. A least squares estimate of satellite attitude. SIAM
Review, 7(3):409�409, 1965.

[18] Greg Welch and Gary Bishop. An introduction to the Kalman Filter.
Department of Computer Science University of North Carolina at Chapel
Hill, February 2001.

http://en.wikipedia.org/wiki/Geographic_coordinate_system

	Introduction
	General Overview
	Overview
	Model Validation

	Deterministic Attitude Estimation
	Introduction
	TRIAD Algorithm
	Wahba's Problem
	Davenport's q-method
	Optimal Two Observation Quaternion Estimation


	Kalman Filter
	Basic discrete Kalman filter
	Introduction
	Hypotheses
	Time Update and Measurement Update Equations

	Extended Kalman Filter
	Hypotheses
	Time Update and Measurement Update Equations

	Attitude determination using the Kalman Filter

	Recursive Quaternion Estimators
	REQUEST algorithm
	Optimal REQUEST
	Prediction stage
	Measurement update stage
	Optimal Gain


	Simulation Study
	Introduction
	Continuous EKF
	Computational model
	Analysis of some results
	Separation principle

	Modified Discrete EKF
	Computational model
	Analysis of some results

	Optimal REQUEST
	Computational model
	Analysis of some results
	Separation Principle


	Conclusion
	The referentials
	Geocentric referential
	Geodetic referential
	Orbital referential
	Transformation between referentials
	Cartesian to Geocentric
	Cartesian to Orbital Reference Frame


	Mathematical annex
	Optimal REQUEST Measurement Equation 
	Dynamics of the K Matrix Error
	Computation of the Matrices Qk and Rk


