Phase D

Beacon format

Prepared by:
Ted Choueiri

Checked by:
Florian George

Approved by:
Muriel Noca

EPFL
Lausanne
Switzerland
-
08/09/2009

RECORD OF REVISIONS

ISS/REV	Date	Modifications	Created/modified by
$1 / 0$	$23 / 06 / 2008$		Ted Choueiri
$1 / 1$	$23 / 07 / 2008$	Octal coding instead of decimal	Florian George
$1 / 2$	$18 / 10 / 2008$	Removed mode from part 1. Added more error flags and states. More precise current limits for solar cells in part 3.	Florian George
$1 / 3$	$08 / 09 / 2009$	Added octal conversion table and examples of received values signification. Removed spacecraft mode	Florian George

Issue : 1 Rev:3 Date : 08/09/2009
Page : 3 of 11
RECORD OF REVISIONS 2
1 INTRODUCTION 4
2 REQUIREMENTS 4
3 TERMS, DEFINITIONS AND ABBREVIATED TERMS 4
3.1 AbBREVIATED TERMS 4
4 BEACON MESSAGE 5
4.1 BASIC REQUIREMENTS 5
4.2 Modulation 5
4.3 Hardware Beacon Message 6
4.4 Software Beacon Message 6
5 OCTAL REPRESENTATION CONVERSION TABLE 11

1 INTRODUCTION

This document describes the beacon message.

2 REQUIREMENTS

The requirements for the Beacon subsystem are described in: S3-D-1-0Level5_Beacon_specifications.

3 TERMS, DEFINITIONS AND ABBREVIATED TERMS

3.1 Abbreviated terms

Abbreviation	Meaning
ADCS	Attitude Determination and Control System
ADS	Antenna Deployment System
BSS	Beacon Subsystem
CDMS	Command and Data Management System
COM	Communication
EPS	Electrical Power System
LSB	Least Significant Bit. Bit on the far right in binary number representation
HBG	Hardware Beacon Generator
HBM	Hardware Beacon Message
MC	Microcontroller
MSB	Receiver Significant Bit. Bit on the far left in binary number representation
Rx	Software Beacon Generator (i.e. EPS microcontroller)
SBG	Software Beacon Message
SBM	Transmitter
Tx	

4 BEACON MESSAGE

The BSS sends regularly a simple message to earth. It is used to identify the satellite and to send some basic information as to the state of the satellite. It is generated either by the Hardware Beacon Generator or by the Software Beacon Generator.

4.1 Basic requirements

The requirements are listed in the S3-D-1-0-Level5_Beacon_specifications. However, here is an overview of some requirements:

- The BSS will use at most at input 300 mW in peak power, and 50 mW in mean power.
- The BSS shall transmit at 14 bps .
- Signal will be modulated in Morse code.

4.2 Modulation

The signal will be modulated using Morse Code. This is an overview of the Morse alphabet. Other characters, letters and signs are also possible.

Char	Code	Char	Code	Char	Code	Char	Code
A	-	J	----	S	-••	1	-----
B	-	K	-	T	-	2	-•
C	- - -	L	- - •	U	-•-	3	-••-
D	- -	M	--	V	-	4	- . \cdot
E	-	N	-•	W	---	5	- . . .
F	-••	O	---	X	- •-	6	- •••
G	--•	P	- - -	Y	-•--	7	-- . -
H	. . .	Q	--•-	Z	--••	8	---••
I	-	R	- -	0	-----	9	----•

Table 1: Morse alphabet

The symbol (\cdot) is called a dit, and the symbol $(-)$ is called a dah.

There are four rules to observe to generate correct and understandable Morse code:

- The dah is 3 times longer than the dit.
- The space between a dit and a dah in a character is the length of 1 dit.
- The space between two characters in a word is the length of a dah (= 3 dits).
- The space between two words is the length of 7 dits.

4.3 Hardware Beacon Message

The HBG shall emit the callsign HB9EG/1 once every 30 seconds. The HBM will be transmitted only if the EPS is in Recovery mode, or if the EPS microcontroller is no longer functioning.

The desired bit rate is $10 \mathrm{bits} / \mathrm{s}$. Using PARIS as the standard word (it gives us 43 bits/word when we consider a dit as being a bit), this gives us a "speed" of 13.9 wpm .

4.4 Software Beacon Message

The software beacon message is divided in 4 parts.
The parts are sent one after the other with an interval of 30 seconds between each sending. Then a complete software beacon message is sent every two minutes.

Before every sent of an entire software beacon message, the information must be updated and the Morse code of the message must be created. These actions are made by the function "updateSBM". Therefore all parts of the message refer to the state of the spacecraft at a same point in time.

As decimal representation is not practical on microcontrollers (the binary to decimal conversion requires not base-2 divisions), numbers are instead transmitted using the octal representation (base8 , digits 0 to 7) which is trivial to implement. A conversion table is available at the end of this document.

4.4.1.1.1 Part 0

The part 0 of the beacon message contains the SSID of the spacecraft. This identification code is the same code as the hardware beacon message and has for value "HB9EG/1". This code is fixed and every the same all the time of the mission.

Issue : 1 Rev:3

4.4.1.1.2 Part 1

The part 1 of the beacon message contains three types of information. The structure of the Morse code is:
header-space-ErrorFlag-space-PowerON

The values are:

- The header of the part
- Fixed to " 1 "
- The state of the error flag
- 5 bits representing the error bit of the five subsystems in following order from MSB to LSB:
- Payload
- ADCS
- CDMS
- COM
- EPS
- These bits are grouped and the value is sent in octal representation
- For example: receiving '20' is '10000' in binary \rightarrow payload error bit only.
- The state of the power on flag (which subsystems are turned on or off)
- 6 bits representing the power on bit of the subsystems in following order from MSB to LSB:
- ADS
- Payload
- ADCS
- CDMS
- Beacon
- COM
- These bits are grouped and the value is sent in octal representation
- For example: receiving '23' is '010011' in binary which means Payload, Beacon and COM powered on.

4.4.1.1.3 Part 2

The part 2 of the beacon message contains two types of information. The structure of the Morse code is:
header-space-BATTERY1VOLTAGE-space-BATTERY2VOLTAGE
The values are:

- The header of the part
- Fixed to "2"
- The voltage level of the batteries 1 and 2
- The values are 8 -bit and sent in octal representation.
- They are the non-calibrated raw values of the onboard analog-to-digital converter.
- The following formula is used to get the value in V : $\mathrm{U}=80 \mathrm{x} / 4095$

Issue : $1 \quad$ Rev: 3

4.4.1.1.4 Part 3

The part 3 of the beacon message contains two types of information. The structure of the Morse code is:
header-space-SolarCells-space-Battery1Temperature

The values are:

- The header of the part
- Fixed to " 3 "
- The solar cells produced current
- The solar cells are in the following order: $-\mathrm{X},+\mathrm{X},-\mathrm{Y},+\mathrm{Y},-\mathrm{Z},+\mathrm{Z}$
- The produced current is divided in ranges and each range has a value:
- $0: 0 \leq$ current $<125 \mathrm{~mA}$
- $1: 125 \leq$ current $<250 \mathrm{~mA}$
- 2: $250 \leq$ current $<375 \mathrm{~mA}$
- 3: $375 \leq$ current $<500 \mathrm{~mA}$
- $4: 500 \leq$ current $<625 \mathrm{~mA}$
- 5: $625 \leq$ current $<750 \mathrm{~mA}$
- 6: $750 \leq$ current $<875 \mathrm{~mA}$
- 7: $875 \leq$ current $\leq 1000 \mathrm{~mA}$
- The six values are sent as one number
- For example: '203070' means:
- -X production between 250 and 375 mA
- -Y production between 375 and 500 mA
- -Z production between 875 and 1000 mA
- $+\mathrm{X},+\mathrm{Y}$ and +Z production between 0 and 125 mA
- The temperature of the battery 1
- The value is transformed to fit in 6 bits and to transmit it unsigned as an octal number. The following formula is used to get the correct temperature in ${ }^{\circ} \mathrm{C}$:
- $T=4 x-128$

4.4.1.1.5 Conversion from numerical value to Morse value

From the moment we know the values to send in the software beacon message; these values must be converted in Morse code.

Coding each unit in Morse code

Once the separation is made, the units must be converted in Morse code.
Warning: for the software beacon message, we used the abridged format of Morse code for the number. This format is the following:

Value	1	2	3	4	5	6	7	8	9	0
Morse	\bigcirc^{-}	$\bigcirc{ }^{\circ}$	-00_	-000 _	\bigcirc	_-000	_ 000	- ${ }^{\circ}$	_o	-

Figure 1 - Abridged Morse code

Between two units of the same number, the space is represented by three values set to " 0 ". Between two different numbers, the space is represented by seven values set to " 0 ".

5 OCTAL REPRESENTATION CONVERSION TABLE

The following table provides the conversion between numbers in octal (Oct), decimal (Dec) and binary (Bin) representations for all number using up to 2 digits in octal (up to 6 bits numbers):

Oct	Dec	Bin									
0	0	0	20	16	10000	40	32	100000	60	48	110000
1	1	1	21	17	10001	41	33	100001	61	49	110001
2	2	10	22	18	10010	42	34	100010	62	50	110010
3	3	11	23	19	10011	43	35	100011	63	51	110011
4	4	100	24	20	10100	44	36	100100	64	52	110100
5	5	101	25	21	10101	45	37	100101	65	53	110101
6	6	110	26	22	10110	46	38	100110	66	54	110110
7	7	111	27	23	10111	47	39	100111	67	55	110111
10	8	1000	30	24	11000	50	40	101000	70	56	111000
11	9	1001	31	25	11001	51	41	101001	71	57	111001
12	10	1010	32	26	11010	52	42	101010	72	58	111010
13	11	1011	33	27	11011	53	43	101011	73	59	111011
14	12	1100	34	28	11100	54	44	101100	74	60	111100
15	13	1101	35	29	11101	55	45	101101	75	61	111101
16	14	1110	36	30	11110	56	46	101110	76	62	111110
17	15	1111	37	31	11111	57	47	101111	77	63	111111

