SwissCube Project Phase D Qualification and Flight Acceptance Review, March 9, 2009

Noémy Scheidegger

Systems Engineering Team

. .

Contents

Sience Mission and Payload Design

- Sience Objectives
- Elements of the payload

Payload Test Results:

Optical Alignment Tests

Science Objectives

Measure the airglow emission in the upper atmosphere at 100 km altitude to :

- Demonstrate the feasibility of using airglow as a basis for a low-cost earth sensor
- Validate the established airglow model or bring additional information about airglow dependence on
 - → latitude
 - \rightarrow altitude
 - \rightarrow local solar time

nightglow and aurora borealis

Optical Alignment Test

Payload Design

CMOS detector MT9V032 188 x 120 pixels, pixel size = 24 μ m resolution = 0.16°/pixel FOV = 18.8 x 25°

focusing optics triplet design with OTS components

support structure titanium

baffle

solar exclusion angle = 30° attenuation factor = 10⁻⁴ vanes: stainless steel spacers: aluminium

> closing cap aluminium

filter CWL 767 nm FWHM 20 nm

payload board

microcontroller MSP430F1611 CMOS detector MT9V032 temperature sensor LM94022 oscillator HC-49/US SMD RAM R1LV0416CSB-7LI

- Purpose: test robustness of the opto-mechanical system of the payload against vibrations, shocks and temperature variations
- Tested Requirement:

Field of view

The payload may have a FOV of at least 20°.

Angular resolution

The payload may measure airglow with an angular resolution of at least 0.3°.

 \rightarrow Maximum spot diameter = 48 µm (2 pixels)

- Test Setup:
 - Test bench for payload alignment test
- Limitations of the PL test bench
 - intensity of the laser spot
 - angle of incidence of the laser
- Updated success criteria

 \rightarrow spot size and intensity distribution have to remain constant

N.S. / March 9, 2009

- Test results for the QM:
 - variation of the spot diameter \leq pixel
 - variation of the intensity distribution \leq pixel

Angle of incidence	-8.5 [deg]	0 [deg]	8.5 [deg]
Full image after optical calibration		•	
Spot after optical calibration		-	÷
Full image after QM test campaign	-	•	
Spot after QM test campaign	0.2000		

- Test results for the FM:
 - variation of the spot diameter \leq pixel
 - variation of the intensity distribution \leq pixel

Angle of incidence	-8.5 [deg]	0 [deg]	8.5 [deg]
Full image after optical calibration			
Spot after optical calibration	-		
Full image after QM test campaign	•	-	
Spot after QM test campaign			

. .

First image after power up is grey (noise)

Optical Alignment Test

- After each power up of the payload, two pictures will be taken and only the second one will be downloaded.
- Analysis of the spot for PL alignment tests should be done more accurately
 - Intensity distribution of the spot should be done to determine the RMS spot diameter
- Characterisation of the CMOS detector has been done on a DM, but should be repeated for the FM prior to the launch

SwissCul

Conclusions and Future Work

- Payload QM and FM successfully passed their test campaign
- Additional work related to the payload and science mission :
 - programming of a tool to analyse the images (ongoing)
 - programming of a tool to determine when an image has to be taken

- Purpose: characterise the dark signal of the CMOS detector vs. temperature
- Tested Requirement:

Signal-to-Noise-Ratio

Optical Alignment Test

The payload shall allow taking science measurements with a SNR of at least 3 for limb measurements.

 \rightarrow Maximum mean dark signal = 350 kHz

- Test Setup:
 - Thermal Chamber
 - Dark room

SwissCub

SwissCube

Test: Performance of the CMOS Detector vs. Temperature

- Test condition:
 - -15°C to °70°C
 - 2 different register configurations of the detector

airglow signal

at night: 8k - 40k e⁻/s at day: 470k - 4M e⁻/s

- Test results:
 - mean DS < min airglow signal if T < 40°C,
 - PL board is operational between -15° and 70°C

Aiglow Model

Intensity of the airglow Integration time EarthModel_FV - Emission type-----Intensity Scale DCR Integration Time Saturation Intensity (photons/pixel) Mean Dark Count Rate (Hz) Integration time (s) Mean Emission Min Emission 4 • 4 Max Emission Simulate SPADs * 4 4 + 4 Þ. Simulate Aurora 4 • Time of Observation Simulation of DS Simulation of the 01:00 Moon and aurora 02:00 03:00 04:00 05:00 Intensity of 06:00 Image of the 07:00 the airglow 08:00 airglow as seen 09:00 Local solar time from the satellite, 0 10:00 -0 11:00 here from a GEO 12:00 0 13:00 0 14:00 0 15:00 16:00 17:00 0 18:00 0 19:00 0 20:00 0 21:00 0 22:00 0 23:00 24:00 500 Image 1 Save Image

. .

- Payload may be a technology demonstrator of an earth sensor based on airglow
 - Observes the emission at 762 nm with a bandwidth between 10 nm and 40 nm
 - Has a spatial resolution of at least 0.3° and a FOV of 20°
 - Can perform science mission with the sun no closer than 30° from its boresight.
- Physical and electrical constraints

Optical Alignment Test

- Volume: $30 \times 30 \times 65 \text{ mm}^3$ for the optics $80 \times 35 \times 15 \text{ mm}^3$ for the payload board
- Mass: < 50 g
- Peak Power: < 450 mW during 30 s for each image
- Additional design driver
 - The PL board is not a critical element of the SwissCube satellite

 \rightarrow no redundancy has been taken into account for this subsystem

optics of the AIRES earth sensor

SwissCub

During the first 3 month one image each 4.5 days:

Optical Alignment Test

- 5 images of dayglow/nightglow measured at limb/nadir
- Total: 20 measurements, cycle repetition of 18 days
- After 3 month: observation of variation of emission intensity depending on latitude
 - Dayglow/nightglow above 85° N/S
 - Dayglow/nightglow between 40° and 50° N/S
 - Dayglow/nightglow between 5° N and 5° S
 - Total : 10 measurements, cycle of repetition of 45 days
 8 measurements per latitude in one year

SwissCul

Operational Scenario: PL Board

- PL board always turned on for housekeeping
- Detector turned on only when science observations are carried out
- Science observations are triggered by EPS
- Power consumption:
 - 8 mW when no science observations are performed
 - < 450 mW during science observations

Design Description: Optical System

- Triplet design with off-the-shelf components
- FOV 18.8° x 25°

SwissCube

- Resolution 0.16°/pixel
- Baffle for a solar exclusion angle of 30° with an attenuation factor of 10⁻⁴
- Filter with a central wavelength at 767 nm and a bandwidth of 20 nm

- Microcontroller MSP430F1611
 - Operate the detector
 - Communicate with the EPS

Optical Alignment Test

- Read temperature sensors
- CMOS Detector MT9V032
 - Capture images of the airglow
- Temperature Sensor LM94022
 - Used for dark signal correction
- Oscillator HC-49/US SMD
 - Provide clock reference for the CMOS detector
- RAM R1LV0416CSB-7LI
 - Store images until transmission to ground station

SwissCub

Design Description: Expected Airglow Images

Limb Observations

Zenith Observations

