

SwissCube Project Phase D, November 11th 2008

SwissCube

Science Mission and Payload Design

Noémy Scheidegger

0.00

Science Objectives

Measure the airglow emission in the upper atmosphere at 100 km altitude to :

- Demonstrate the feasibility of using airglow as a basis for a low-cost earth sensor
- Validate the established airglow model or bring additional information about airglow dependence on
 - \rightarrow latitude
 - \rightarrow altitude
 - \rightarrow local solar time

nightglow and aurora borealis

* * **

Aiglow Model

Hes∙so

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne Haute Ecole Spécialisée de Suisse occidentale de Neuch

Université

November 11th 2008

Driving Requirements for the SwissCube Payload

- Payload may be a technology demonstrator of an earth sensor based on airglow
 - Observes the emission at 762 nm with a bandwidth between 10 nm and 40 nm
 - Has a spatial resolution of at least 0.3° and a FOV of 20°
 - Can perform science mission with the sun no closer than 30° from its boresight.
- Physical and electrical constraints
 - Volume: 30 x 30 x 65 mm³ for the optics
 80 x 35 x 15 mm³ for the payload board
 - Mass: < 50 g
 - Peak Power: < 450 mW during 30 s for each image
- Additional design driver
 - The PL board is not a critical element of the SwissCube satellite

 \rightarrow no redundancy has been taken into account for this subsystem

optics of the AIRES earth sensor

Operational Scenario: Frequency of Measurements

- During the first 3 month one image each 4.5 days:
 - 5 images of dayglow/nightglow measured at limb/nadir
 - Number of images limited by ground station coverage and relatively low data rate
 - Total: 20 measurements, cycle repetition of 18 days

- After 3 month: observation of variation of emission intensity depending on latitude
 - Dayglow/nightglow above 85° N/S
 - Dayglow/nightglow between 40° and 50° N/S
 - Dayglow/nightglow between 5° N and 5° S
 - Total : 10 measurements, cycle of repetition of 45 days
 8 measurements per latitude in one year

Operational Scenario: Data Exploitation

- Data Products
 - Each image provides a measurement of the intensity of the phenomena
 - Range measured: [500 61400] photons
 - Resolution: 500 photons
 - Complementary information: time, latitude, solar local time, altitude
- Data Exploitation
 - Data will be used to validate model
 - Data will then be available to public and scientific institutions (interest from World Radiation Center in Davos/CH)
 - Space Weather relevance has not yet been assessed, will be done once data is received

Operational Scenario: PL Board

- PL board always turned on for housekeeping
- Detector turned on only when science observations are carried out
- Science observations are triggered by EPS
- Power consumption:
 - 8 mW when no science observations are performed
 - < 450 mW during science observations

Design Description: Overview

CMOS detector MT9V032

188 x 120 pixels, pixel size = 24 μ m resolution = 0.16°/pixel FOV = 18.8 x 25°

focusing optics triplet design with OTS components

support structure titanium

first SwissCube payload prototype

baffle

solar exclusion angle = 30° attenuation factor = 10^{-4} vanes: stainless steel spacers: aluminium

> closing cap aluminium

Université

filter CWL 767 nm FWHM 20 nm

payload board

microcontroller MSP430F1611 CMOS detector MT9V032 temperature sensor LM94022 oscillator HC-49/US SMD RAM R1LV0416CSB-7LI

November 11th 2008

0 00

Design Description: Optical System

- Triplet design with off-the-shelf components
- FOV 18.8° x 25°
- Resolution 0.16°/pixel
- Baffle for a solar exclusion angle of 30° with an attenuation factor of 10⁻⁴
- Filter with a central wavelength at 767 nm and a bandwidth of 20 nm

Design Description: Payload Electronics

- Microcontroller MSP430F1611
 - Operate the detector
 - Communicate with the EPS
 - Read temperature sensors
- CMOS Detector MT9V032

 Capture images of the airglow
- Temperature Sensor LM94022
 - Used for dark signal correction
- Oscillator HC-49/US SMD
 - Provide clock reference for the CMOS detector
- RAM R1LV0416CSB-7LI
 - Store images until transmission to ground station

Design Description: Expected Airglow Images

Limb Observations

Zenith Observations

Hes ⋅so

Université

